内容简介:memcache是互联网分层架构中,使用最多的的KV缓存。面试的过程中,memcache相关的问题几乎是必问的,关于memcache的面试提问,你能回答到哪一个层次呢?画外音:很可能关乎,你拿到offer的薪酬档位。这一类问题,考察用没用过,知不知道,相对比较好回答。
memcache是互联网分层架构中,使用最多的的KV缓存。面试的过程中,memcache相关的问题几乎是必问的,关于memcache的面试提问,你能回答到哪一个层次呢?
画外音:很可能关乎,你拿到offer的薪酬档位。
第一类问题:知道不知道
这一类问题,考察用没用过,知不知道,相对比较好回答。
关于memcache一些基础特性,使用过的小伙伴基本都能回答出来:
(1)mc的 核心职能 是 KV内存管理 , value存储 最大为1M ,它 不支持复杂数据结构 ( 哈希、列表、集合、有序集合等 );
(2)mc 不支持持久化 ;
(3)mc 支持key过期 ;
(4)mc持续运行 很少会出现内存碎片 ,速度不会随着服务运行时间降低;
(5)mc使用 非阻塞IO复用网络模型 ,使用 监听线程/工作线程的多线程模型 ;
面对这类封闭性的问题,一定要斩钉截铁,毫无犹豫的给出回答。
第二类问题:为什么(why),什么(what)
这一类问题,考察对于一个工具,只停留在使用层面,还是有原理性的思考。
memcache为什么不支持复杂数据结构?为什么不支持持久化?
业务决定技术方案,mc的诞生,以“ 以服务的方式,而不是库的方式管理KV内存 ”为 设计目标 ,它颠覆的是,KV内存管理组件库,复杂数据结构与持久化并不是它的初衷。
当然,用“颠覆”这个词未必不合适,库和服务各有使用场景,只是 在分布式的环境下,服务的使用范围更广 。设计目标,诞生背景很重要,这一定程度上决定了实现方案,就如 redis 的出现,是为了有一个更好用,更多功能的缓存服务。
画外音:我很喜欢问这个问题,大部分候选人面对这个没有标准答案的问题,状态可能是蒙圈。
memcache是用什么技术实现key过期的?
懒淘汰(lazy expiration)。
memcache为什么能保证运行性能,且很少会出现内存碎片?
提前分配内存。
memcache为什么要使用非阻塞IO复用网络模型,使用监听线程/工作线程的多线程模型,有什么优缺点?
目的是提高吞吐量。
多线程能够充分的利用 多核 ,但会带来一些 锁冲突 。
面对这类半开放的问题,有些并没有标准答案,一定要回答出自己的思考和见解。
第三类问题:怎么做(how) | 文本刚开始
这一类问题,探测候选人理解得有多透,掌握得有多细,对技术有多刨根究底。
画外音:所谓“好奇心”,真的很重要,只想要“一份工作”的技术人很难有这种好奇心。
memcache是什么实现内存管理,以减小内存碎片,是怎么实现分配内存的?
开讲之前,先解释几个非常重要的概念:
chunk :它是将内存分配给用户使用的最小单元。
item :用户要存储的数据,包含key和value,最终都存储在chunk里。
slab :它会管理一个固定chunk size的若干个chunk,而mc的内存管理,由若干个slab组成。
画外音:为了避免复杂性,本文先不引入page的概念了。
如上图所示,一系列slab,分别管理128B,256B,512B…的chunk内存单元。
将上图中管理128B的slab0放大:
能够发现slab中的一些核心数据结构是:
-
chunk_size :该slab管理的是128B的chunk
-
free_chunk_list :用于快速找到空闲的chunk
-
chunk []:已经预分配好,用于存放用户item数据的实际chunk空间
画外音:其实还有lru_list。
假如用户要存储一个100B的item,是如何找到对应的可用chunk的呢?
会从 最接近item大小的slab的chunk[]中 ,通过free_chunk_list快速找到对应的chunk,如上图所示,与item大小最接近的chunk是128B。
为什么不会出现内存碎片呢?
拿到一个128B的chunk,去存储一个100B的item,余下的28B不会再被其他的item所使用,即:实际上 浪费了存储空间,来减少内存碎片 ,保证访问的速度。
画外音:理论上,内存碎片几乎不存在。
memcache通过slab,chunk,free_chunk_list来快速分配内存, 存储用户的item,那它又是如何快速实现key的查找的呢?
没有什么特别算法:
-
通过 hash表 实现快速查找
-
通过 链表 来解决冲突
用最朴素的方式,实现key的快速查找。
随着item的个数不断增多,hash冲突越来越大,hash表如何保证查询效率呢?
当item总数达到hash表长度的1.5倍时,hash表会 动态扩容 ,rehash将数据重新分布,以保证查找效率不会不断降低。
扩展hash表之后,同一个key在新旧hash表内的位置会发生变化, 如何保证数据的一致性,以及如何保证迁移过程服务的可用性呢 (肯定不能加一把大锁,迁移完成数据,再重新服务吧) ?
哈希表扩展,数据迁移是一个耗时的操作,会有一个专门的线程来实施,为了 避免大锁 ,采用的是“ 分段迁移 ”的策略。
当item数量达到阈值时,迁移线程会分段迁移, 对hash表中的一部分桶进行 加锁,迁移数据,解锁 :
-
一来,保证不会有长时间的阻塞,影响服务的可用性
-
二来,保证item不会在新旧hash表里不一致
新的问题来了,对于已经存在与旧hash表中的item,可以通过上述方式迁移,那么 在item迁移的过程中, 如果有新的item插入,是应该插入旧hash表还是新hash表呢?
memcache的做法是, 判断旧hash表中,item应该插入的桶,是否已经迁移至新表中 :
-
如果已经迁移 ,则item直接插入新hash表
-
如果还没有被迁移 ,则直接插入旧hash表,未来等待迁移线程来迁移至新hash表
为什么要这么做呢, 不能直接插入新hash表吗?
memcache没有给出官方的解释,楼主揣测,这种方法能够 保证一个桶内的数据,只在一个hash表中 (要么新表,要么旧表),任何场景下都不会出现,旧表新表查询两次,以提升查询速度。
memcache是怎么实现key过期的,懒淘汰(lazy expiration)具体是怎么玩的?
实现“超时”和“过期”,最常见的两种方法是:
-
启动一个超时线程,对所有item进行扫描,如果发现超时,则进行超时回调处理
-
每个item设定一个超时信号通知,通知触发超时回调处理
这两种方法,都需要有额外的资源消耗。
mc的查询业务非常简单,只会返回cache hit与cache miss两种结果,这种场景下,非常适合使用 懒淘汰 的方式。
懒淘汰的核心 是:
-
item不会被主动淘汰,即没有超时线程,也没有信号通知来主动检查
-
item每次会查询(get)时,检查一下时间戳,如果已经过期,被动淘汰,并返回cache miss
举个例子,假如set了一个key,有效期100s:
-
在第50s的时候,有用户查询(get)了这个key,判断未过期,返回对应的value值
-
在第200s的时候,又有用户查询(get)了这个key,判断已过期,将item所在的chunk释放,返回cache miss
这种方式的实现代价很小,消耗资源非常低:
-
在item里,加入一个过期时间属性
-
在get时,加入一个时间判断
内存总是有限的,chunk数量有限的情况下,能够存储的item个数是有限的, 假如chunk被用完了,该怎么办?
仍然是上面的例子,假如128B的chunk都用完了,用户又set了一个100B的item, 要不要挤掉已有的item?
要。
这里的 启示 是:
(1)即使item的有效期设置为“永久”,也可能被淘汰;
(2)如果要做全量数据缓存,一定要仔细评估,cache的内存大小,必须大于,全量数据的总大小,否则很容易采坑;
挤掉哪一个item?怎么挤?
这里涉及 LRU淘汰机制 。
如果操作系统的内存管理,最常见的淘汰算法是FIFO和LRU:
-
FIFO (first in first out):最先被set的item,最先被淘汰
-
LRU (least recently used):最近最少被使用(get/set)的item,最先被淘汰
使用LRU算法挤掉item,需要增加两个属性:
-
最近item访问计数
-
最近item访问时间
并增加一个LRU链表,就能够快速实现。
画外音:所以,管理chunk的每个slab,除了free_chunk_list,还有lru_list。
思路 比结论重要。
架构师之路-分享技术思路
文章较长,若有收获,帮忙 转发+再看 一下。
调研:面试memcache内核,你在哪个档位?
以上所述就是小编给大家介绍的《memcache内核,一文搞定!面试再也不怕了!!!(值得收藏)》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!
猜你喜欢:本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
Introduction to Computer Science Using Python
Dierbach, Charles / 2012-12 / $ 133.62
Introduction to Computer Science Using Python: A Computational Problem-Solving Focus introduces students to programming and computational problem-solving via a back-to-basics, step-by-step, objects-la......一起来看看 《Introduction to Computer Science Using Python》 这本书的介绍吧!