内容简介:使用 Elasticsearch 搭建搜索引擎的过程中,免不了会反复测试 Analyzer 的效果,如果每次都建立一个索引,配置索引的 Analyzer,插入 Document,无疑效率会很低。ES 提供了Response由于 Analyzer 必须指定一个 Tokenizer,因此可以使用
使用 Elasticsearch 搭建搜索引擎的过程中,免不了会反复测试 Analyzer 的效果,如果每次都建立一个索引,配置索引的 Analyzer,插入 Document,无疑效率会很低。ES 提供了 _analyze
接口,可以 无需创建索引快速测试 Analyzer
,推荐搭配 Kibana 中的 Dev Tools 一同使用。
POST _analyze { "tokenizer": "icu_tokenizer", "text": "你好世界" }
Response
{ "tokens" : [ { "token" : "你好", "start_offset" : 0, "end_offset" : 2, "type" : "<IDEOGRAPHIC>", "position" : 0 }, { "token" : "世界", "start_offset" : 2, "end_offset" : 4, "type" : "<IDEOGRAPHIC>", "position" : 1 } ] }
测试 Character Filter
由于 Analyzer 必须指定一个 Tokenizer,因此可以使用 Keyword 这个特殊的 Tokenizer, 即不做任何分词,从而可以看到 Character Filter 的效果。
POST _analyze { "char_filter": [ "html_strip" ], "tokenizer": "keyword", "text": "<p>Hello <b>World</b>!</p>" }
Response
{ "tokens" : [ { "token" : """ Hello World! """, "start_offset" : 0, "end_offset" : 26, "type" : "word", "position" : 0 } ] }
测试 Token filter
POST _analyze { "tokenizer": "icu_tokenizer", "filter": [{ "type": "stop", "stopwords": ["am"] }], "text": "I am ironman" }
Response
{ "tokens" : [ { "token" : "I", "start_offset" : 0, "end_offset" : 1, "type" : "<ALPHANUM>", "position" : 0 }, { "token" : "ironman", "start_offset" : 5, "end_offset" : 12, "type" : "<ALPHANUM>", "position" : 2 } ] }
测试已经创建的索引
而对于已经创建的索引,可以通过 ${index}/_analyze
接口来调用某个已经创建好的 Analyzer,或者预览某个 Field 对于文本的分析结果。 如创建如下索引
PUT my_index { "settings": { "analysis": { "analyzer": { "my_analyzer": { "char_filter": [ "html_strip" ], "tokenizer": "icu_tokenizer", "filter": [ "my_stop_filter" ] } }, "filter": { "my_stop_filter": { "type": "stop", "stopwords": [ "am" ] } } } }, "mappings": { "my_type": { "properties": { "title": { "type": "text", "analyzer": "my_analyzer" } } } } }
调用这个索引中已经创建的 Analyzer my_analyzer
POST my_index/_analyze { "analyzer": "my_analyzer", "text": "<p>I am <b>Ironman</b>!</p>" }
或者预览 title
字段的分析结果
POST my_index/_analyze { "field": "title", "text": "<p>I am <b>Ironman</b>!</p>" }
而对于已经索引的数据,可以通过
GET /${index}/${type}/${id}/_termvectors?fields=${fields_name}
来查看实际存储的数据, 如
POST _bulk { "index": { "_index": "my_index", "_type": "my_type", "_id": 1} } { "title": "<p>I am <b>Ironman</b>!</p>" } GET my_index/my_type/1/_termvectors?fields=title { "_index": "my_index", "_type": "my_type", "_id": "1", "_version": 1, "found": true, "took": 2, "term_vectors": { "title": { "field_statistics": { "sum_doc_freq": 2, "doc_count": 1, "sum_ttf": 2 }, "terms": { "I": { "term_freq": 1, "tokens": [ { "position": 0, "start_offset": 3, "end_offset": 4 } ] }, "Ironman": { "term_freq": 1, "tokens": [ { "position": 2, "start_offset": 11, "end_offset": 22 } ] } } } } }
以上所述就是小编给大家介绍的《如何快速测试 Elasticsearch 的 Analyzer》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!
猜你喜欢:- Flutter 学习之路 - 测试(单元测试,Widget 测试,集成测试)
- itest(爱测试)接口测试&敏捷测试管理 7.7.7 发布,接口测试重大升级
- 性能测试vs压力测试vs负载测试
- SpringBoot | 第十三章:测试相关(单元测试、性能测试)
- 敏捷测试VS传统测试对比,6招玩转敏捷测试!
- itest(爱测试)接口测试&敏捷测试管理平台 8.1.0 发布
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
UNIX 时间戳转换
UNIX 时间戳转换
HSV CMYK 转换工具
HSV CMYK互换工具