内容简介:容器化,云原生越演越烈,新概念非常之多。信息爆炸的同时,带来层层迷雾。我尝试从扩容出发理解其脉路,经过实践探索,整理形成一个入门教程,包括下面四篇文章。这是第三篇,kubernetes编排应用。Kubernetes是一个开源的,用于管理云平台中多个主机上的容器化的应用,Kubernetes的目标是让部署容器化的应用简单并且高效(powerful),Kubernetes提供了应用部署,规划,更新,维护的一种机制。
容器化,云原生越演越烈,新概念非常之多。信息爆炸的同时,带来层层迷雾。我尝试从扩容出发理解其脉路,经过实践探索,整理形成一个入门教程,包括下面四篇文章。
- 从 docker 到istio之一 - 使用Docker将应用容器化
- 从docker到istio之二 - 使用compose部署应用
- 从docker到istio之三 - kubernetes编排应用
- 从docker到istio之四 - istio管理应用
这是第三篇,kubernetes编排应用。
kubernetes
Kubernetes是一个开源的,用于管理云平台中多个主机上的容器化的应用,Kubernetes的目标是让部署容器化的应用简单并且高效(powerful),Kubernetes提供了应用部署,规划,更新,维护的一种机制。
Kubernetes在希腊语中意思是船长或领航员,这也恰好与它在容器集群管理中的作用吻合,即作为装载了集装箱(Container)的众多货船的指挥者,负担着全局调度和运行监控的职责。因为Kubernetes在k和s之间有8个字母,所以又简称k8s
快速体验k8s,可以使用Docker for mac中集成的k8s。
启动k8s后,等待其初始化完成,然后 docker ps
可以看到k8s启动了一系列的容器:
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES 17a693617137 docker/kube-compose-controller "/compose-controller…" 3 days ago Up 3 days k8s_compose_compose-74649b4db6-szsqz_docker_4f5997b7-5c47-11e9-95b9-025000000001_0 a9b666b48815 docker/kube-compose-api-server "/api-server --kubec…" 3 days ago Up 3 days k8s_compose_compose-api-5d754cdd89-ncwrq_docker_131b4d65-04e7-11e9-837c-025000000001_0 f4b05eefc73a 6f7f2dc7fab5 "/sidecar --v=2 --lo…" 3 days ago Up 3 days k8s_sidecar_kube-dns-86f4d74b45-zh6qc_kube-system_f669bc59-04e6-11e9-837c-025000000001_0 867f8f040258 c2ce1ffb51ed "/dnsmasq-nanny -v=2…" 3 days ago Up 3 days k8s_dnsmasq_kube-dns-86f4d74b45-zh6qc_kube-system_f669bc59-04e6-11e9-837c-025000000001_0 17f26a6e91d2 80cc5ea4b547 "/kube-dns --domain=…" 3 days ago Up 3 days k8s_kubedns_kube-dns-86f4d74b45-zh6qc_kube-system_f669bc59-04e6-11e9-837c-025000000001_0 ... 复制代码
kubectl version
查看集群版本:
Client Version: version.Info{Major:"1", Minor:"10", GitVersion:"v1.10.11", GitCommit:"637c7e288581ee40ab4ca210618a89a555b6e7e9", GitTreeState:"clean", BuildDate:"2018-11-26T14:38:32Z", GoVersion:"go1.9.3", Compiler:"gc", Platform:"darwin/amd64"} Server Version: version.Info{Major:"1", Minor:"10", GitVersion:"v1.10.11", GitCommit:"637c7e288581ee40ab4ca210618a89a555b6e7e9", GitTreeState:"clean", BuildDate:"2018-11-26T14:25:46Z", GoVersion:"go1.9.3", Compiler:"gc", Platform:"linux/amd64"} 复制代码
kubectl get nodes
查看k8s集群节点:
NAME STATUS ROLES AGE VERSION docker-for-desktop Ready master 123d v1.10.11 复制代码
kubectl get service
查看k8s默认启动的服务:
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 123d 复制代码
部署应用及测试
编写应用部署文件
1. flaskapp文件 k8s/flaskapp.yaml
apiVersion: v1 kind: Service metadata: name: flaskapp spec: ports: - port: 5000 selector: name: flaskapp --- apiVersion: extensions/v1beta1 kind: Deployment metadata: name: flaskapp spec: replicas: 1 template: metadata: labels: name: flaskapp spec: containers: - image: flaskapp:0.0.2 name: flaskapp ports: - containerPort: 5000 复制代码
了解这个部署文件,需要先大概了解一下k8s的运作方式。k8s通过api server提供restful接口,用于集群交互。每一个部署对象,都有 apiVersion
, kind
, metadata
, spec
这几个关键字。
- 定义了Service和Deployment2个类型的对象。Service表示k8s对外提供的服务,Deployment表示某个service的部署方式。
- Service对象的ports描述了服务端口,这个是集群内部网络的端口。
- Service对象的selector描述了服务如何选择对于的部署,采用标签 name: flaskapp ,这是一种解耦合的依赖关系。
- Deployment的replicas描述了容器的副本个数,下文会演示如何扩充。
- Deployment的containers描述了镜像名称,服务端口等。
2. redis服务文件 k8s/redis.yaml
apiVersion: v1 kind: Service metadata: name: redis spec: ports: - port: 6379 selector: name: redis --- apiVersion: extensions/v1beta1 kind: Deployment metadata: name: redis spec: replicas: 1 template: metadata: labels: name: redis spec: containers: - image: redis:4-alpine3.8 name: redis ports: - containerPort: 6379 复制代码
redis的部署文件和flaskapp的部署文件类似。
3. nginx服务文件 k8s/nginx.yaml
kind: ConfigMap apiVersion: v1 metadata: name: nginx-config data: default.conf: | upstream flaskapp { server flaskapp:5000; } server { listen 80; server_name localhost; root /usr/share/nginx/html; location / { proxy_pass http://flaskapp; proxy_set_header X-Real-IP $remote_addr; proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for; proxy_set_header Host $host; proxy_redirect off; } } --- apiVersion: v1 kind: Service metadata: name: nginx spec: ports: - port: 80 selector: name: nginx type: NodePort --- apiVersion: extensions/v1beta1 kind: Deployment metadata: name: nginx spec: replicas: 1 template: metadata: labels: name: nginx spec: containers: - image: nginx:1.15.8-alpine name: nginx ports: - containerPort: 80 volumeMounts: - name: nginx-config-volume mountPath: /etc/nginx/conf.d/default.conf subPath: default.conf volumes: - name: nginx-config-volume configMap: name: nginx-config 复制代码
nginx的部署文件,变化在:
nginx\default.conf
部署应用到集群
使用 kubectl apply -f k8s
命令将编写yaml文件提交到k8s集群,集群会自动根据yaml文件的声明,进行部署。
service "flaskapp" created deployment.extensions "flaskapp" created configmap "nginx-config" created service "nginx" created deployment.extensions "nginx" created service "redis" created deployment.extensions "redis" created 复制代码
这里的 kubectl apply -f k8s
表示将k8s目录下的文件都提交给k8s集群。当然,也可以逐个文件提交 kubectl apply -f k8s/redis.yaml
。
访问应用
先 kubectl get service
检查一下k8s内的服务:
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE flaskapp ClusterIP 10.110.202.47 <none> 5000/TCP 31s kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 123d nginx NodePort 10.100.233.149 <none> 80:30457/TCP 31s redis ClusterIP 10.106.55.214 <none> 6379/TCP 31s 复制代码
注意nginx服务部分的PORTS为 80:30457/TCP ,这表示将容器的80端口暴露到本机网络的30457端口,和我们之前的docker启动时候的 -p 80:80
参数类似。
服务是由Pod提供的,继续检查一下pods的状况 kubectl get pods
:
NAME READY STATUS RESTARTS AGE flaskapp-6c4fccdf99-v6w2v 1/1 Running 0 2m nginx-85fb469b96-lr982 1/1 Running 0 2m redis-5b44bb8d97-wwmll 1/1 Running 0 2m 复制代码
当然,也可以直接查看docker的容器 docker ps
:
➜ docker2istio docker ps CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES ad7377ae7196 ae70b17240ec "docker-entrypoint.s…" About an hour ago Up About an hour k8s_redis_redis-5b44bb8d97-wwmll_default_2907f4a3-6639-11e9-b8cb-025000000001_0 c01108b49076 1a61773c4c07 "python flaskapp.py" About an hour ago Up About an hour k8s_flaskapp_flaskapp-6c4fccdf99-xcmwb_default_28fbe1b1-6639-11e9-b8cb-025000000001_0 11d1fa3f182b 315798907716 "nginx -g 'daemon of…" About an hour ago Up About an hour k8s_nginx_nginx-85fb469b96-lr982_default_28fbdeee-6639-11e9-b8cb-025000000001_0 c28032a4b068 k8s.gcr.io/pause-amd64:3.1 "/pause" About an hour ago Up About an hour k8s_POD_redis-5b44bb8d97-wwmll_default_2907f4a3-6639-11e9-b8cb-025000000001_0 7091657acfbc k8s.gcr.io/pause-amd64:3.1 "/pause" About an hour ago Up About an hour k8s_POD_flaskapp-6c4fccdf99-xcmwb_default_28fbe1b1-6639-11e9-b8cb-025000000001_0 97007670c247 k8s.gcr.io/pause-amd64:3.1 "/pause" About an hour ago Up About an hour k8s_POD_nginx-85fb469b96-lr982_default_28fbdeee-6639-11e9-b8cb-025000000001_0 ... 复制代码
!!!注意: pod并不等同于docker的容器,Pod才是k8s操作的最小单元。简单的说,一个Pod可能包含多个容器,从yaml文件中 containers: 这个关键字可以看出。仔细观察 docker ps
的输出,可以发现每个pod除了用户自定义的容器外,还有镜像为 k8s.gcr.io/pause-amd64:3.1 的系统容器。
最后使用 curl http://127.0.0.1:30457
访问服务
Hello World by 10.1.0.21 from 192.168.65.3 ! 该页面已被访问 1 次。 复制代码
扩容
k8s集群下,扩容非常简单
➜ docker2istio kubectl edit deployment/flaskapp deployment.extensions "flaskapp" edited 复制代码
修改其中的** replicas: 3 **。
也可以修改 k8s\flaskapp.yaml
中的值,然后 kubectl apply -f k8s\flaskapp.yaml
另外,如果镜像有更新,也是采用修改flaskapp.yaml文件然后apply的方式。
kubectl get pods -o wide
检查扩容结果, 这里使用了 -o wide
,可以显示更多信息
NAME READY STATUS RESTARTS AGE IP NODE flaskapp-6c4fccdf99-9xsjl 1/1 Running 0 3m 10.1.0.23 docker-for-desktop flaskapp-6c4fccdf99-xcmwb 1/1 Running 0 1h 10.1.0.21 docker-for-desktop flaskapp-6c4fccdf99-zp8mk 1/1 Running 0 3m 10.1.0.24 docker-for-desktop nginx-85fb469b96-lr982 1/1 Running 0 1h 10.1.0.19 docker-for-desktop redis-5b44bb8d97-wwmll 1/1 Running 0 1h 10.1.0.22 docker-for-desktop 复制代码
多次访问服务:
➜ docker2istio curl http://127.0.0.1:30457 Hello World by 10.1.0.21 from 192.168.65.3 ! 该页面已被访问 2 次。 ➜ docker2istio curl http://127.0.0.1:30457 Hello World by 10.1.0.23 from 192.168.65.3 ! 该页面已被访问 3 次。 ➜ docker2istio curl http://127.0.0.1:30457 Hello World by 10.1.0.24 from 192.168.65.3 ! 该页面已被访问 4 次。 ➜ docker2istio curl http://127.0.0.1:30457 复制代码
结合前面看到的flaskapp的IP,可以比较清晰的看到请求会自动负载到不同的Pod。
清理
k8s下的容器清理也非常简单, 使用 kubectl delete -f k8s
:
service "flaskapp" deleted deployment.extensions "flaskapp" deleted configmap "nginx-config" deleted service "nginx" deleted deployment.extensions "nginx" deleted service "redis" deleted deployment.extensions "redis" deleted 复制代码
容器编排
实际上,k8s集群在多集群情况下,会自动将Pod调度到合适的节点,这就是容器编排的概念。这种能力,主要有2个方式。
节点标签
我们的k8s演示集群节点情况如下:
[tyhall51@192-168-10-21 k8s]$ kubectl get nodes NAME STATUS ROLES AGE VERSION 192-168-10-14 Ready <none> 13d v1.14.0 192-168-10-18 Ready <none> 130d v1.14.0 192-168-10-21 Ready master 131d v1.14.0 复制代码
部署示例应用到k8s演示集群:
[tyhall51@192-168-10-21 docker2istio]$ kubectl apply -f k8s -n docker2istio service/flaskapp created deployment.extensions/flaskapp created configmap/nginx-config created service/nginx created deployment.extensions/nginx created service/redis created deployment.extensions/redis created 复制代码
!!!注意 为了不和别的服务发生名称冲突,这里部署时候使用了 -n docker2istio
参数,创建了一个独立的名称空间。名称空间可以使用 kubectl create namespace docker2istio
命令创建。
查看名称空间下的服务:
[tyhall51@192-168-10-21 docker2istio]$ kubectl get service -n docker2istio NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE flaskapp ClusterIP 10.101.127.107 <none> 5000/TCP 47s nginx NodePort 10.103.147.187 <none> 80:30387/TCP 46s redis ClusterIP 10.106.162.13 <none> 6379/TCP 46s 复制代码
查看名称空间下的pod:
[tyhall51@192-168-10-21 docker2istio]$ kubectl get pods -o wide -n docker2istio NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES flaskapp-589c4cdf86-sftr9 1/1 Running 0 81s 10.244.2.30 192-168-10-14 <none> <none> nginx-55b87f44ff-b4x88 1/1 Running 0 81s 10.244.2.31 192-168-10-14 <none> <none> redis-7fc7fc64fb-2nzjq 1/1 Running 0 81s 10.244.1.195 192-168-10-18 <none> <none> 复制代码
参考前文,修改副本数量参数 replicas ,对flaskapp进行扩容:
[tyhall51@192-168-10-21 docker2istio]$ kubectl get pods -o wide -n docker2istio NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES flaskapp-589c4cdf86-8jzwx 1/1 Running 0 4s 10.244.1.197 192-168-10-18 <none> <none> flaskapp-589c4cdf86-sftr9 1/1 Running 0 3m10s 10.244.2.30 192-168-10-14 <none> <none> flaskapp-589c4cdf86-tz98x 1/1 Running 0 4s 10.244.1.196 192-168-10-18 <none> <none> nginx-55b87f44ff-b4x88 1/1 Running 0 3m10s 10.244.2.31 192-168-10-14 <none> <none> redis-7fc7fc64fb-2nzjq 1/1 Running 0 3m10s 10.244.1.195 192-168-10-18 <none> <none> 复制代码
这里就可以看到,扩容完成后,flaskapp的3个pod会自动调度到 192-168-10-18 和 192-168-10-18 2个业务节点。
192-168-10-14节点的磁盘使用的是高速ssd,io性能会更好一些,我们希望 redis 能够调度到该节点。
首先,给192-168-10-14节点打上 storage=ssd
的标签:
[tyhall51@192-168-10-21 docker2istio]$ kubectl label nodes 192-168-10-14 storage=ssd node/192-168-10-14 labeled 复制代码
检查标签是否正常标记:
[tyhall51@192-168-10-21 docker2istio]$ kubectl get nodes --show-labels | grep ssd 192-168-10-14 Ready <none> 13d v1.14.0 beta.kubernetes.io/arch=amd64,beta.kubernetes.io/os=linux,kubernetes.io/arch=amd64,kubernetes.io/hostname=192-168-10-14,kubernetes.io/os=linux,storage=ssd 复制代码
然后修改 k8s/redis.yaml
,增加 nodeSelector
数值,其值为 storage: ssd
, 修改完成的deployment如下:
apiVersion: extensions/v1beta1 kind: Deployment metadata: name: redis spec: replicas: 1 template: metadata: labels: name: redis spec: containers: - image: redis:4-alpine3.8 name: redis ports: - containerPort: 6379 nodeSelector: storage: ssd 复制代码
使用 kubectl apply -f k8s/redis.yaml -n docker2istio
应用修改。查看docker2istio的pod分布情况:
[tyhall51@192-168-10-21 docker2istio]$ kubectl get pods -o wide -n docker2istio NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES flaskapp-589c4cdf86-8jzwx 1/1 Running 0 11m 10.244.1.197 192-168-10-18 <none> <none> flaskapp-589c4cdf86-sftr9 1/1 Running 0 14m 10.244.2.30 192-168-10-14 <none> <none> flaskapp-589c4cdf86-tz98x 1/1 Running 0 11m 10.244.1.196 192-168-10-18 <none> <none> nginx-55b87f44ff-b4x88 1/1 Running 0 14m 10.244.2.31 192-168-10-14 <none> <none> redis-66f66896b6-7666t 1/1 Running 0 4s 10.244.2.35 192-168-10-14 <none> <none> 复制代码
可见redis节点重新被调度到192-168-10-14节点,表现出了节点标签的亲和力。
节点污点
在k8s演示集群中192-168-10-21是master节点,默认不会调度业务pod,这种能力是采用节点污点实现的。 取消192-168-10-21调度污点:
kubectl taint node 192-168-10-21 node-role.kubernetes.io/master:NoSchedule- 复制代码
然后扩容flaskapp的副本数到6个,观察pod分布情况:
[tyhall51@192-168-10-21 docker2istio]$ kubectl get pods -o wide -n docker2istio NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES flaskapp-589c4cdf86-8jzwx 1/1 Running 0 20m 10.244.1.197 192-168-10-18 <none> <none> flaskapp-589c4cdf86-92rm5 1/1 Running 0 5s 10.244.2.36 192-168-10-14 <none> <none> flaskapp-589c4cdf86-bfhs8 1/1 Running 0 5s 10.244.0.26 192-168-10-21 <none> <none> flaskapp-589c4cdf86-sftr9 1/1 Running 0 23m 10.244.2.30 192-168-10-14 <none> <none> flaskapp-589c4cdf86-srv25 1/1 Running 0 5s 10.244.0.25 192-168-10-21 <none> <none> flaskapp-589c4cdf86-tz98x 1/1 Running 0 20m 10.244.1.196 192-168-10-18 <none> <none> nginx-55b87f44ff-b4x88 1/1 Running 0 23m 10.244.2.31 192-168-10-14 <none> <none> redis-66f66896b6-7666t 1/1 Running 0 9m30s 10.244.2.35 192-168-10-14 <none> <none> 复制代码
这里可以看到,有2个pod被调到到192-168-10-21节点了。
重新设置污点:
[tyhall51@192-168-10-21 docker2istio]$ kubectl taint node 192-168-10-21 node-role.kubernetes.io/master=:NoSchedule node/192-168-10-21 tainted 复制代码
删除在192-168-10-21上的2个pod:
kubectl delete pod/flaskapp-589c4cdf86-bfhs8 -n docker2istio kubectl delete pod/flaskapp-589c4cdf86-srv25 -n docker2istio 复制代码
观察pod分布情况:
[tyhall51@192-168-10-21 docker2istio]$ kubectl get pods -o wide -n docker2istio NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES flaskapp-589c4cdf86-8jzwx 1/1 Running 0 25m 10.244.1.197 192-168-10-18 <none> <none> flaskapp-589c4cdf86-92rm5 1/1 Running 0 4m40s 10.244.2.36 192-168-10-14 <none> <none> flaskapp-589c4cdf86-fp5w4 1/1 Running 0 73s 10.244.2.37 192-168-10-14 <none> <none> flaskapp-589c4cdf86-lv2ch 1/1 Running 0 73s 10.244.1.199 192-168-10-18 <none> <none> flaskapp-589c4cdf86-p9kb6 1/1 Running 0 7s 10.244.2.38 192-168-10-14 <none> <none> flaskapp-589c4cdf86-sftr9 1/1 Running 0 28m 10.244.2.30 192-168-10-14 <none> <none> nginx-55b87f44ff-b4x88 1/1 Running 0 28m 10.244.2.31 192-168-10-14 <none> <none> redis-66f66896b6-7666t 1/1 Running 0 14m 10.244.2.35 192-168-10-14 <none> <none> 复制代码
可以看到删除后的pod,在192-168-10-18和192-168-10-14这2个业务节点上重建了。
总结
k8s相对于compose:
- 管理规模扩大,由单机到集群。
- 扩容更方便了,可以无缝扩容。
- 部署策略更完善,可以对容器进行 编排 。
相关组件
- Etcd
etcd 是一个分布式键值对存储,设计用来可靠而快速的保存关键数据并提供访问。通过分布式锁,leader选举和写屏障(write barriers)来实现可靠的分布式协作。etcd集群是为高可用,持久性数据存储和检索而准备。k8s中使用etcd作为集群信息存储。
- Efk
EFK (Elasticsearch + Fluentd + Kibana) 是kubernetes官方推荐的日志收集方案
- helm
Helm helps you manage Kubernetes applications — Helm Charts help you define, install, and upgrade even the most complex Kubernetes application.
- Rock
File, Block, and Object Storage Services for your Cloud-Native Environments
...
...
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网
猜你喜欢:本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。