内容简介:其实我一个都没答上来。并不是因为我笨,是因为我不会。在大扰的帮助下,现在我会了,求求你再给我一个机会。顾名思义,首先是结构上的不同1、TreeSet背后的结构是TreeMap,也就是红黑树,能够实现自动排序。它通过equals方法或者compareTo方法进行内容的比较。
其实我一个都没答上来。并不是因为我笨,是因为我不会。在大扰的帮助下,现在我会了,求求你再给我一个机会。
TreeSet/HashSet 区别
顾名思义,首先是结构上的不同
1、TreeSet背后的结构是TreeMap,也就是红黑树,能够实现自动排序。它通过equals方法或者compareTo方法进行内容的比较。
2、HashSet背后是HashMap,key是无序的,只能做外部排序。既然是Hash,那么就要重写其中对象的hashCode和equals方法
另外,还有个细微的差别可以拿来装b:
1、HashSet可以接受null值,有且只有一个 2、TreeSet 默认 不可以接受null值,会直接抛出空指针异常
set里没有重复数据,TreeSet里连虚无都没有。
HashMap 如何解决冲突,扩容机制
烂大街的问题,问哪答哪吧。这样的东西就是靠背。
HashMap的内部结构其实是数组+链表(java8后如果长度大于8则转换为红黑树)。HashMap初始化时,默认有16个 hash槽 。
存入对象时,首先,通过对象的hashCode,定位到hash槽。如果多个对象同时落入同一个槽,那么就会使用链表解决本槽上的冲突。
HashMap在创建时,会有一个负载因子。每次put操作,都会检查当前容量是否会超出阈值(initailCapacity*loadFactor)。如果超出,则扩容为当前的两倍。扩容后,数据需要重新散列,也就是 transfer 方法。
经验:resize非常耗时,所以如果能够提前预估容量,可以把initailCapacity提前固定下来。
ConcurrentHashMap 如何做到高并发的
简单点说,使用了分段锁(分离锁)。每一把锁用于锁住容器中的一部分数据,减少线程间对锁的竞争。
这道题往深里问会死人的,篇幅有限,不啰嗦。
线程池平常怎么用
普通的场景,使用工厂类Executors创建就可以了。常用的有Single、Fixed、Cached三种。
更多时候,为了更精细的控制,会直接对ThreadPoolExecutor类进行定制。阿里的规范也要求这么搞(当然要舔一舔),我尤其关心其中的阻塞队列和饱和策略。
当然,你只有对阻塞队列和拒绝策略熟悉才能这么说。否则给自己挖坑就太不聪明了。
他们很喜欢你提到阿里规范,这让我觉得jdk设计的很low
多个线程等待到某一节点然后统一放行有几种实现方式?
最经典的就是CountDownLatch,主线程阻塞在await方法,每个线程调用countDown。可以解决一些经典的赛马问题。
还有一个变种就是CyclicBarrier。每个线程都阻塞在await方法,达到一定阈值集体放行。
另外还可以使用一些较初级的api,比如Thread的join方法。Future的get方法等。复杂不推荐。
也可以答sleep啊。有什么问题么?我用while等待一个变量也是可以的,但我为什么要这么做?
数据库索引结构
B+ Tree,为了适应缓慢的磁盘而生的一种索引结构。必须保证按照索引的最左前缀查询。
Hash和HashMap类似,处理冲突的方式是链表
pg的索引结构就多了去了。Mysql这么少怎么感觉怪怪的?难道要我回答存储引擎的区别?
select * from t where a=? and b>? order by c limit 0,100 如何加索引
知道这个就结论就行了=> 当order by 字段出现在where条件中时,才会利用索引而无需 排序 操作。其他情况,order by不会出现排序操作。
按照最左原则,我可以创建 (a,b) 的索引。
什么是聚簇索引和非聚簇索引
一个表只能有一个聚簇索引。主索引文件和数据文件为同一份文件,默认的InnoDB就支持聚簇索引,B+ Tree的叶子节点上的data就是数据本身。
而MyISAM就不支持聚簇索引,它的叶子结点存放的不是数据本身,而是数据存放的地址。在文件结构上,会分为一个索引文件、一个数据文件。
对编程来说没什么鸟用。
了解 CAP 吗?redis 里的 CAP 是怎样的?
Consistency Availability Partition tolerance
redis简单主从模式侧重于 CP 的,即对于一致性要求较高。 redis-cluster,则属于 AP 类型,更加强调可用性
cap就是帽子,绿油油的那种
如何理解幂等?项目中接口的幂等是如何做的?
幂等是指多次执行,影响相同。
比如大多数Post操作,重复提交订单等,最终只会有一个订单生成成功。还有一种情况就是消息,由于大多数MQ之保证 at least once ,所以消息有时会重复。
1、对于Post请求,我一般在请求成功后,强制跳转到其他页面,避免刷新提交。
2、复杂的操作一般使用流水号来实现。
3、某些不带流水号的消息,处理的时候,就要进行多次校验和check,甚至引入消息状态表,来保证幂等。
就如同表白,每次表白都是被拒绝,因为我就是那个id!
解释下乐观锁悲观锁
悲观锁总是假设情况最坏,每次操作数据都认为别人会修改,就加锁来保证安全。后面的访问者只能等待。数据库中的行锁、表锁,java中的同步关键字等,都属于悲观锁。
乐观锁正好相反,总是假设最好的情况,不用对数据加锁,但多了一次额外的判断操作。比如concurrent包里大量的CAS操作、判断新旧版本号机制等。
悲观锁是老婆,有你独占;乐观锁是炮友,按预约规划
JVM 判断对象是否回收?
答案就是GC roots。也就是从根对象出发,没有任何一个对象引用到它,那么就判断这个对象是不可达的。
通常被骂“断子绝孙”的人,就是要被回收的root
GCROOT 有哪些?
1 、 虚拟机栈(栈帧中的本地变量表)中引用的对象。
2、 本地方法栈中JNI(即一般说的native方法)引用的对象。
3、 方法区中的静态变量和常量引用的对象。
4、活跃线程的引用对象
所以不要让他们过度繁殖。
反射能获得类里面方法的名称吗?参数名称呢?参数类型呢?
都可以。
java8以后,通过Parameter类获取参数 名称 。但有前提,需要加编译开关。
javac -parameters 复制代码
默认是关闭的,干!
问题都偏到月球上去了
动态代理的实现方式?CgLib 和 jdk 的代理有什么区别?
java中通过实现InvocationHandler接口来实现动态代理,然后使用Proxy将其初始化。
Cglib使用了ASM自己吗生成框架,可以代理普通类,但代理不了final类,而jdk的只能代理接口。
在spring里,cglib胜出
分布式锁有哪些主流实现方式?redis 和 zk 锁有什么区别?
大体分为两类。
乐观锁:基于版本号机制和CAS实现,与存放版本号的存储无关。
悲观锁:1、基于数据库记录,进入时写数据,退出时删记录
2、数据库行锁,比如分布式quartz,它是一把排它锁
3、基于 Redis 的setnx函数(由于大多数会设置超时,所以推荐用带px的set原子函数)
4、基于zookeeper
区别:
redis获取锁是轮训机制。锁释放后会有多个调用者争抢,某些任务有可能饿死。
zk是监听机制,有变动会接到通知。除了非公平锁,也可以实现公平锁。
从优雅性来说,显然redis胜出
ThreadLocal 作用是什么?说下用法
ThreadLocal用来隔离数据。 ThreadLocal中存放的是与线程相关的数据,底层实际上是一个map,通过线程可以获取存储数据的map。
这种方式与Servlet中的Request类似。
一些需要绑定到线程的数据,比如一些线程的统计数据,就可以放在这里。
据说这是一种线程同步方式,但它明显无锁啊。
ThreadLocal有没有优化方式?
ThreadLocal中的Map性能较差,解决Hash采用的线性探测方法。
Netty就对它进行了优化,优化方式是继承了Thread类,实现了自己的FastThreadLocal。它使用
搞不懂jdk,明明有O(1)的Map,非要自己造个更慢的轮子,为什么呢?话说,这个问题,简直又偏到火星了。
设计秒杀系统要考虑哪些点?
1、数据预热秒杀都是瞬时操作,不要等流量来了再加载数据。可以提前对数据进行预热,比如加载到缓存等。
2、缓存包括CDN缓存和数据缓存。保证缓存系统的高可用,数据随后落地。
3、解决超卖引入MQ,串行化操作库存,达到阈值后不再消费,并关闭购买功能。或者直接操作缓存。
4、流量削峰通过引入MQ,将耗时业务进行削峰,平稳处理用户需求。
5、熔断限流熔断,优先保证主要业务的进行。限流,识别异常流量,进行封锁;同时,允许部分请求失败。
6、弹性扩容在判断系统负载达到极限时,可以通过增加服务器的途径抵抗峰值。需要打通运维环境,能够快速扩容。
怕就怕抓住一点问到底。秒杀个屁啊,淘宝的秒杀要么抢不到,要么500!
算了,杭州咱也不想去。下次试试阿里最烂的部门,看看要求是不是低点,能不能过。
以上所述就是小编给大家介绍的《2年java,蚂蚁一面,卒》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!
猜你喜欢:- InitAdmin 201905 更新,一面分离一面不分离
- 字节跳动后台实习一面凉经
- 每日一面——深入理解reduce方法
- WebSocket是时候展现你优秀的一面了
- 前端不为人知的一面——前端冷知识集锦
- Facebook 的另一面:改变计算机技术,推动开源
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
Probability and Computing
Michael Mitzenmacher、Eli Upfal / Cambridge University Press / 2005-01-31 / USD 66.00
Assuming only an elementary background in discrete mathematics, this textbook is an excellent introduction to the probabilistic techniques and paradigms used in the development of probabilistic algori......一起来看看 《Probability and Computing》 这本书的介绍吧!