import pandas as pd
import numpy as np
# Pivot Points, Supports and Resistances
def PPSR(df):
PP = pd.Series((df['High'] + df['Low'] + df['Close']) / 3)
R1 = pd.Series(2 * PP - df['Low'])
S1 = pd.Series(2 * PP - df['High'])
R2 = pd.Series(PP + df['High'] - df['Low'])
S2 = pd.Series(PP - df['High'] + df['Low'])
R3 = pd.Series(df['High'] + 2 * (PP - df['Low']))
S3 = pd.Series(df['Low'] - 2 * (df['High'] - PP))
psr = {'PP':PP, 'R1':R1, 'S1':S1, 'R2':R2, 'S2':S2, 'R3':R3, 'S3':S3}
PSR = pd.DataFrame(psr)
df = df.join(PSR)
return df
# Stochastic oscillator %K
def STOK(df):
SOk = pd.Series((df['Close'] - df['Low']) / (df['High'] - df['Low']), name = 'SO%k')
df = df.join(SOk)
return df
# Stochastic Oscillator, EMA smoothing, nS = slowing (1 if no slowing)
def STO(df, nK, nD, nS=1):
SOk = pd.Series((df['Close'] - df['Low'].rolling(nK).min()) / (df['High'].rolling(nK).max() - df['Low'].rolling(nK).min()), name = 'SO%k'+str(nK))
SOd = pd.Series(SOk.ewm(ignore_na=False, span=nD, min_periods=nD-1, adjust=True).mean(), name = 'SO%d'+str(nD))
SOk = SOk.ewm(ignore_na=False, span=nS, min_periods=nS-1, adjust=True).mean()
SOd = SOd.ewm(ignore_na=False, span=nS, min_periods=nS-1, adjust=True).mean()
df = df.join(SOk)
df = df.join(SOd)
return df
# Stochastic Oscillator, SMA smoothing, nS = slowing (1 if no slowing)
def STO(df, nK, nD, nS=1):
SOk = pd.Series((df['Close'] - df['Low'].rolling(nK).min()) / (df['High'].rolling(nK).max() - df['Low'].rolling(nK).min()), name = 'SO%k'+str(nK))
SOd = pd.Series(SOk.rolling(window=nD, center=False).mean(), name = 'SO%d'+str(nD))
SOk = SOk.rolling(window=nS, center=False).mean()
SOd = SOd.rolling(window=nS, center=False).mean()
df = df.join(SOk)
df = df.join(SOd)
return df
# Mass Index
def MassI(df):
Range = df['High'] - df['Low']
EX1 = pd.ewma(Range, span = 9, min_periods = 8)
EX2 = pd.ewma(EX1, span = 9, min_periods = 8)
Mass = EX1 / EX2
MassI = pd.Series(pd.rolling_sum(Mass, 25), name = 'Mass Index')
df = df.join(MassI)
return df
# Vortex Indicator: http://www.vortexindicator.com/VFX_VORTEX.PDF
def Vortex(df, n):
i = 0
TR = [0]
while i < df.index[-1]:
Range = max(df.get_value(i + 1, 'High'), df.get_value(i, 'Close')) - min(df.get_value(i + 1, 'Low'), df.get_value(i, 'Close'))
TR.append(Range)
i = i + 1
i = 0
VM = [0]
while i < df.index[-1]:
Range = abs(df.get_value(i + 1, 'High') - df.get_value(i, 'Low')) - abs(df.get_value(i + 1, 'Low') - df.get_value(i, 'High'))
VM.append(Range)
i = i + 1
VI = pd.Series(pd.rolling_sum(pd.Series(VM), n) / pd.rolling_sum(pd.Series(TR), n), name = 'Vortex_' + str(n))
df = df.join(VI)
return df
# KST Oscillator
def KST(df, r1, r2, r3, r4, n1, n2, n3, n4):
M = df['Close'].diff(r1 - 1)
N = df['Close'].shift(r1 - 1)
ROC1 = M / N
M = df['Close'].diff(r2 - 1)
N = df['Close'].shift(r2 - 1)
ROC2 = M / N
M = df['Close'].diff(r3 - 1)
N = df['Close'].shift(r3 - 1)
ROC3 = M / N
M = df['Close'].diff(r4 - 1)
N = df['Close'].shift(r4 - 1)
ROC4 = M / N
KST = pd.Series(pd.rolling_sum(ROC1, n1) + pd.rolling_sum(ROC2, n2) * 2 + pd.rolling_sum(ROC3, n3) * 3 + pd.rolling_sum(ROC4, n4) * 4, name = 'KST_' + str(r1) + '_' + str(r2) + '_' + str(r3) + '_' + str(r4) + '_' + str(n1) + '_' + str(n2) + '_' + str(n3) + '_' + str(n4))
df = df.join(KST)
return df
# True Strength Index
def TSI(df, r, s):
M = pd.Series(df['Close'].diff(1))
aM = abs(M)
EMA1 = pd.Series(pd.ewma(M, span = r, min_periods = r - 1))
aEMA1 = pd.Series(pd.ewma(aM, span = r, min_periods = r - 1))
EMA2 = pd.Series(pd.ewma(EMA1, span = s, min_periods = s - 1))
aEMA2 = pd.Series(pd.ewma(aEMA1, span = s, min_periods = s - 1))
TSI = pd.Series(EMA2 / aEMA2, name = 'TSI_' + str(r) + '_' + str(s))
df = df.join(TSI)
return df
# Accumulation/Distribution
def ACCDIST(df, n):
ad = (2 * df['Close'] - df['High'] - df['Low']) / (df['High'] - df['Low']) * df['Volume']
M = ad.diff(n - 1)
N = ad.shift(n - 1)
ROC = M / N
AD = pd.Series(ROC, name = 'Acc/Dist_ROC_' + str(n))
df = df.join(AD)
return df
# Force Index
def FORCE(df, n):
F = pd.Series(df['Close'].diff(n) * df['Volume'].diff(n), name = 'Force_' + str(n))
df = df.join(F)
return df
# Ease of Movement
def EOM(df, n):
EoM = (df['High'].diff(1) + df['Low'].diff(1)) * (df['High'] - df['Low']) / (2 * df['Volume'])
Eom_ma = pd.Series(pd.rolling_mean(EoM, n), name = 'EoM_' + str(n))
df = df.join(Eom_ma)
return df
# Coppock Curve
def COPP(df, n):
M = df['Close'].diff(int(n * 11 / 10) - 1)
N = df['Close'].shift(int(n * 11 / 10) - 1)
ROC1 = M / N
M = df['Close'].diff(int(n * 14 / 10) - 1)
N = df['Close'].shift(int(n * 14 / 10) - 1)
ROC2 = M / N
Copp = pd.Series(pd.ewma(ROC1 + ROC2, span = n, min_periods = n), name = 'Copp_' + str(n))
df = df.join(Copp)
return df
# Keltner Channel
def KELCH(df, n):
KelChM = pd.Series(pd.rolling_mean((df['High'] + df['Low'] + df['Close']) / 3, n), name = 'KelChM_' + str(n))
KelChU = pd.Series(pd.rolling_mean((4 * df['High'] - 2 * df['Low'] + df['Close']) / 3, n), name = 'KelChU_' + str(n))
KelChD = pd.Series(pd.rolling_mean((-2 * df['High'] + 4 * df['Low'] + df['Close']) / 3, n), name = 'KelChD_' + str(n))
df = df.join(KelChM)
df = df.join(KelChU)
df = df.join(KelChD)
return df
# Donchian Channel
def DONCH(low, high, timeperiod: int = 20):
if len(high) != len(low):
return [], []
dc_low = []
dc_high = []
for i in range(0, len(high)):
if i < timeperiod - 1:
dc_low.append(np.nan)
dc_high.append(np.nan)
else:
min_list = low.ix[i - (timeperiod - 1): i]
max_list = high.ix[i - (timeperiod - 1): i]
if len(min_list) == 0 or len(max_list) == 0:
dc_low.append(np.nan)
dc_high.append(np.nan)
else:
dc_min = min(min_list)
dc_max = max(max_list)
dc_low.append(dc_min)
dc_high.append(dc_max)
return dc_low, dc_high
以上所述就是小编给大家介绍的《python3 一些 talib 没有的 indicators》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!
猜你喜欢:本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
算法竞赛入门经典(第2版)
刘汝佳 / 清华大学出版社 / 2014-6-1 / CNY 49.80
《算法竞赛入门经典(第2版)》是一本算法竞赛的入门与提高教材,把C/C++语言、算法和解题有机地结合在一起,淡化理论,注重学习方法和实践技巧。全书内容分为12 章,包括程序设计入门、循环结构程序设计、数组和字符串、函数和递归、C++与STL入门、数据结构基础、暴力求解法、高效算法设计、动态规划初步、数学概念与方法、图论模型与算法、高级专题等内容,覆盖了算法竞赛入门和提高所需的主要知识点,并含有大量......一起来看看 《算法竞赛入门经典(第2版)》 这本书的介绍吧!