内容简介:今天跟大家介绍一款新出的基于PyTorch的语义分割开源库https://github.com/hszhao/semseg
我爱计算机视觉 标星,更快获取CVML新技术
今天跟大家介绍一款新出的基于PyTorch的语义分割开源库 semseg :
https://github.com/hszhao/semseg
其开发者为香港中文大学的博士生Hengshuang Zhao。
https://hszhao.github.io/
介绍
semseg 用 PyTorch实现的 语义分割/场景解析开源库。 它可以方便帮助开发者用于各种语义分割数据集的训练和测试。
该库主要使用ResNet50 / 101/152作为主干网,也可以很容易地改成其他分类网络结构。
目前已经实现了包括PSPNet和PSANet在内的网络,其在2016年ImageNet场景解析挑战赛@ ECCV16,LSUN语义分割挑战赛2017 @ CVPR17和WAD可驾驶区域分割挑战赛2018 @ CVPR18中排名第一。 示例实验数据集包括主流的ADE20K,PASCAL VOC 2012和Cityscapes。
ps. 该库开发者即 PSPNet和PSANet算法的一作。
亮点
1. 同时支持多线程训练与多进程训练,并且后者非常快(该库比较重视训练)。
2. 重新实现的算法取得更好的结果,而且代码结构清晰(说明代码质量高)。
3. 所有初始化模型、训练得到的模型和预测的结果都能够下载(https://drive.google.com/open?id=15wx9vOM0euyizq-M1uINgN0_wjVRf9J3),方便开发者直接使用或者研究比较。
作者推荐的软硬件环境:
(要4到8块显卡,看来没有多卡,语义分割是玩不起了~)
训练简单
该库的训练非常简单, 简单配置后只需要一条命令
sh tool/train.sh ade20k pspnet50
测试简单
简单配置数据集和模型路径后,也只需要一条命令:
sh tool/test.sh ade20k pspnet50
在单幅图像上测试也很简单,示例:
PYTHONPATH=./ python tool/demo.py --config=config/ade20k/ade20k_pspnet50.yaml --image=figure/demo/ADE_val_00001515.jpg TEST.scales '[1.0]'
Performance
在三个数据集上的结果如下:
注意,作者列出的时间是在8个 GeForce RTX 2080 Ti上训练得到的。
感谢作者的分享~
再发一遍地址:
https://github.com/hszhao/semseg
图像分割专业交流群
关注最新语义分割、实例分割等技术,欢迎加入52CV-图像分割专业交流群,扫码添加CV君拉你入群(如果你已经加CV君为好友,请直接私信就好了, 不必重复添加 ),
( 请务必注明:分割 ):
喜欢在QQ交流的童鞋可以加52CV官方QQ群: 702781905 。
(不会时时在线,如果没能及时通过还请见谅)
长按关注 我爱计算机视觉
以上所述就是小编给大家介绍的《PyTorch语义分割开源库semseg》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!
猜你喜欢:- 谷歌最新语义图像分割模型 DeepLab-v3+ 现已开源
- CVPR2019| 12篇CVPR论文开源代码(DeepFashion2/语义分割/人脸数据集基准等)
- 南邮提出实时语义分割的轻量级网络:LEDNET,可达 71 FPS!70.6% class mIoU!即将开源
- 消息队列的消费语义和投递语义
- 剑桥构建视觉“语义大脑”:兼顾视觉信息和语义表示
- 新瓶装旧酒:语义网络,语义网,链接数据和知识图谱
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。