ACL 2019 | 基于知识增强的语言表示模型,多项NLP任务表现超越BERT

栏目: 编程工具 · 发布时间: 5年前

ACL 2019 | 基于知识增强的语言表示模型,多项NLP任务表现超越BERT

作者丨张琨 

学校丨中国科学技术大学博士生

研究方向丨自然语言处理

ACL 2019 | 基于知识增强的语言表示模型,多项NLP任务表现超越BERT

ACL 2019 | 基于知识增强的语言表示模型,多项NLP任务表现超越BERT

论文动机

自从 BERT 被提出之后,整个自然语言处理领域进入了一个全新的阶段,大家纷纷使用 BERT 作为模型的初始化,或者说在 BERT 上进行微调。BERT 的优势就在于使用了超大规模的文本语料,从而使得模型能够掌握丰富的语义模式。

但 BERT 是否还有改进的空间呢? 如下图,当提到*鲍勃迪伦*的时候,单纯依靠大规模的普通文本很难理解到底是指音乐家还是作者,但如果加入充分的先验知识,那么模型可能就会学习到更加精细化的语义表示,如何让 BERT 掌握更多的人类先验知识呢?

本文就提出了一种方法, 将知识图谱的信息加入到模型的训练中 ,这样模型就可以从大规模的文本语料和先验知识丰富的知识图谱中学习到字、词、句以及知识表示等内容,从而有助于其解决更加复杂、更加抽象的自然语言处理问题。

ACL 2019 | 基于知识增强的语言表示模型,多项NLP任务表现超越BERT

模型结构

整个模型的动机就是将知识图谱的信息有效融入到模型的训练中,考虑到 BERT 的复杂结构,如何将知识图谱的信息进行有效融合呢?作者提出了如下的结构:

ACL 2019 | 基于知识增强的语言表示模型,多项NLP任务表现超越BERT

可以看出,模型将 BERT 中的 Encoder 替换为了 T-Encoder+K-Encoder,T-Encoder 依然是对原来的文本进行编码,这部分和 BERT 是一样的,在 K-Encoder 中,可以看到输入输出都变成了两个,多了 entity 的信息。

具体来说,首先可以利用 TransE 的方法对知识图谱中的内容进行表示,并对文本中的实体进行识别,这样文本中的实体都会有一个来自知识图谱的实体表示,需要注意的是文本的长度和实体的长度并不相等,然后先用 mutli-head attention 对文本和实体分别进行处理,得到在整个序列中情境感知的语义表示:

ACL 2019 | 基于知识增强的语言表示模型,多项NLP任务表现超越BERT

接下来就是对这两种信息进行融合,或者说利用实体的信息来增强对文本语义的理解,这个时候就分成两种情况: 

1. 文本中的词有实体对应,一个很简单的思路,通过一个非线性变换,得到融合后的信息:

ACL 2019 | 基于知识增强的语言表示模型,多项NLP任务表现超越BERT

2. 文中的词没有实体对应,为了保证一致性,还是同样的方法,只是只有实体词的输入:

ACL 2019 | 基于知识增强的语言表示模型,多项NLP任务表现超越BERT

通过这样的方法,就将实体的知识信息融入到了对文本语义的增强表示中,接下来将相应的单元重复多次,就得到的最终的文本语义表示。 

训练细节

从模型上实现了知识图谱信息的有效融合,那如何训练呢?如果单纯还是和 BERT 的训练方式相同,知识图谱的知识信息可能并不能如期望的那样进行有效融合,因此作者参考 Masked Language Model 设计了一个 denoising Entity Auto-encoder (dEA) 任务,用以训练模型对实体信息的感知和对齐,具体内容如下。

dEA 的目的就是要求模型能够根据给定的实体序列和文本序列来预测对应的实体,首先是实体和文本之间的对齐概率计算:

ACL 2019 | 基于知识增强的语言表示模型,多项NLP任务表现超越BERT

这个公式也被当作训练 dEA 时的损失函数,有了目标,那么数据该如何准备呢? 和 Masked Language Model 类似,作者对实体也做了如下处理: 

1. 对于一个给定的文本-实体对应序列,5% 的情况下,实体会被替换为一个随机的实体,这么做是为了让模型能够区分出正确的实体对应和错误的实体对应; 

2. 对于一个给定的文本-实体对应序列,15% 的情况下,实体会被 mask,这是为了保证模型能够在文本-实体没有被完全抽取的情况下找到未被抽取的对应关系; 

3. 对于一个给定的文本-实体对应序列,剩下的 80% 的情况下,保持不变,这是为了保证模型能够充分利用实体信息来增强对文本语义的表达。 

和 BERT 类似,作者也对输入进行了一些调整,从而保证了模型能够自适应不同的任务,下图展示了针对三类自然语言处理任务的输入调整:

ACL 2019 | 基于知识增强的语言表示模型,多项NLP任务表现超越BERT

对于 一般的 NLP 任务 而言,知识在输入的头尾加上特定的开始结束符号,然后送给模型,并取 [CLS] 对应的输出作为输入句子的表示。

对于一些 知识驱动的任务 ,如关系分类,实体类别识别等任务,作者加入了特定的符号用以区分这些任务,对于实体类别识别任务,作者加入了 [ENT] 来指导模型使用文本表示和实体表示进行最后的实体信息识别。

对于 关系分类任务 ,作者加入了 [HD] 和 [TL] 分别表示头实体和尾实体,然后使用 [CLS] 对应的特征向量来进行最后的分类。整个这部分的操作和 GPT-2 的无监督学习有些类似。

实验结果

和 BERT 不同的是,作者首先在两个知识驱动的任务上进行了模型效果的验证: 

1. Entity Typing:给定实体和对应的上下文,模型需要识别该实体的语义类型 

2. Relation Classification:给定一个句子,模型需要识别出句子中的两个实体之间的关系。

这两个任务都是知识驱动的任务,不单单需要模型能够掌握丰富的语义模型,同时需要模型能够有丰富的先验知识,这样才能进行准确识别和分类,下图是对应的实验结果:

ACL 2019 | 基于知识增强的语言表示模型,多项NLP任务表现超越BERT

ACL 2019 | 基于知识增强的语言表示模型,多项NLP任务表现超越BERT

从实验结果上看,模型取得了非常好的效果,这也说明了模型有效融入了知识图谱的先验信息,实现了文本语义的增强表示,同时作者还在常见的 NLP 任务上和 BERT base 进行了对比,实验结果也证实了模型的有效性。

ACL 2019 | 基于知识增强的语言表示模型,多项NLP任务表现超越BERT

总结

自从 BERT 被提出后,NLP 领域的研究形式也开始慢慢向 CV 靠拢,利用这些预训练好的超大模型获得丰富的语义模式,从而通过在具体任务上的微调获得最后的效果。

但 NLP 和 CV 还是有很大不同的,自然语言是一种高度抽象的信息,单纯通过语言模型获取丰富的语义模式并不能一劳永逸地解决所有问题,而这篇文章就进行了这方面的一个尝试,通过 引入外部先验知识增强模型的语义理解和表征 。那是不是还可以进行不仅仅是文本方面的增强,例如通过语音融入情感信息,通过图像引入视觉信息等,这些都是值得研究的地方。

ACL 2019 | 基于知识增强的语言表示模型,多项NLP任务表现超越BERT

点击以下标题查看更多往期内容:

ACL 2019 | 基于知识增强的语言表示模型,多项NLP任务表现超越BERT # 投 稿 通 道 #

让你的论文被更多人看到 

如何才能让更多的优质内容以更短路径到达读者群体,缩短读者寻找优质内容的成本呢? 答案就是:你不认识的人。

总有一些你不认识的人,知道你想知道的东西。PaperWeekly 或许可以成为一座桥梁,促使不同背景、不同方向的学者和学术灵感相互碰撞,迸发出更多的可能性。

PaperWeekly 鼓励高校实验室或个人,在我们的平台上分享各类优质内容,可以是 最新论文解读 ,也可以是 学习心得技术干货 。我们的目的只有一个,让知识真正流动起来。

:memo:  来稿标准:

• 稿件确系个人 原创作品 ,来稿需注明作者个人信息(姓名+学校/工作单位+学历/职位+研究方向) 

• 如果文章并非首发,请在投稿时提醒并附上所有已发布链接 

• PaperWeekly 默认每篇文章都是首发,均会添加“原创”标志

:mailbox_with_mail: 投稿邮箱:

• 投稿邮箱: hr@paperweekly.site  

• 所有文章配图,请单独在附件中发送 

• 请留下即时联系方式(微信或手机),以便我们在编辑发布时和作者沟通

:mag:

现在,在 「知乎」 也能找到我们了

进入知乎首页搜索 「PaperWeekly」

点击 「关注」 订阅我们的专栏吧

关于PaperWeekly

PaperWeekly 是一个推荐、解读、讨论、报道人工智能前沿论文成果的学术平台。如果你研究或从事 AI 领域,欢迎在公众号后台点击 「交流群」 ,小助手将把你带入 PaperWeekly 的交流群里。

ACL 2019 | 基于知识增强的语言表示模型,多项NLP任务表现超越BERT

▽ 点击 |  阅读原文   | 下载论文 & 源码


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

B端产品经理必修课

B端产品经理必修课

李宽 / 电子工业出版社 / 2018-9 / 59

《B端产品经理必修课:从业务逻辑到产品构建全攻略》主要讲述了“单个产品管理流程”,以展示B 端产品经理的工作方法及B 端产品的设计方法。《B端产品经理必修课:从业务逻辑到产品构建全攻略》分为三个部分。第一部分主要讲述的是B 端产品经理的工作流程和定义(即单个产品管理流程),以及从事B 端产品经理的职业现状和规划,还包括设计B 端产品时需要了解的指导思想。第二部分是通过各个章节来讲述单个产品管理流程......一起来看看 《B端产品经理必修课》 这本书的介绍吧!

在线进制转换器
在线进制转换器

各进制数互转换器

XML、JSON 在线转换
XML、JSON 在线转换

在线XML、JSON转换工具