预测性维护:使用卷积神经网络(CNN)检测传感器故障

栏目: 数据库 · 发布时间: 5年前

内容简介:在机器学习中,随着时间的推移,预测维修的话题变得越来越流行。在本文中,我们将看一个分类问题。我们将使用Keras创建一个卷积神经网络(CNN)模型,并尝试对结果进行直观的解释。

预测性维护:使用卷积神经网络(CNN)检测传感器故障

在机器学习中,随着时间的推移,预测维修的话题变得越来越流行。

在本文中,我们将看一个分类问题。我们将使用Keras创建一个卷积神经网络(CNN)模型,并尝试对结果进行直观的解释。

数据集

我决定从evergreen UCI repository(液压系统的状态监测)中获取机器学习数据集(https://archive.ics.uci.edu/ml/datasets/Condition+monitoring+of+hydraulic+systems#)。

该试验台由一次工作回路和二级冷却过滤回路组成,通过油箱连接。系统循环重复恒定负载循环(持续时间60秒)并测量过程值,例如压力,体积流量和温度,同时定量地改变四个液压元件(冷却器、阀门、泵和蓄能器)的状态。

我们可以想象有一个液压管道系统,该系统周期性地接收到由于管道内某种液体的转变而产生的脉冲。此现象持续60秒,采用不同Hz频率的传感器(传感器物理量单位采样率,PS1 Pressure bar, PS2 Pressure bar, PS3 Pressure bar, PS4 Pressure bar, PS5 Pressure bar, PS6 Pressure bar, EPS1电机功率, FS1体积流量, FS2体积流量, TS1温度, TS2温度, TS3温度, TS4温度, VS1振动, VS1振动、CE冷却效率、CP冷却功率、SE效率系数)进行测量。

我们的目的是预测组成管道的四个液压元件的状况。这些目标条件值以整数值的形式注释(易于编码),并告诉我们每个周期特定组件是否接近失败。

读取数据

每个传感器测量的值在特定的txt文件中可用,其中每一行以时间序列的形式占用一个周期。

我决定考虑来自温度传感器(TS1、TS2、TS3、TS4)的数据,该传感器的测量频率为1 Hz(每一个cicle进行60次观察)。

label = pd.read_csv('profile.txt', sep='    ', header=None) 
data = ['TS1.txt','TS2.txt','TS3.txt','TS4.txt'] 
df = pd.DataFrame() 
#read and concat data 
for txt in data: 
 read_df = pd.read_csv(txt, sep='   ', header=None) 
 df = df.append(read_df) 
#scale data 
def scale(df): 
 return (df - df.mean(axis=0))/df.std(axis=0) 
df = df.apply(scale) 

预测性维护:使用卷积神经网络(CNN)检测传感器故障

对于第一个周期,我们从温度传感器得到这些时间序列:

预测性维护:使用卷积神经网络(CNN)检测传感器故障

Temperature Series for cicle1 from TS1 TS2 TS3 TS4

机器学习模型

为了捕捉有趣的特征和不明显的相关性,我们决定采用一维卷积神经网络(CNN)。这种机器学习模型非常适合对传感器的时间序列进行分析,并强制在短的固定长度段中重塑数据。

我选择了Keras网站上描述的卷积神经网络(CNN),并更新了参数。该机器学习模型的建立是为了对制冷元件的状态进行分类,仅对给出温度时间序列的数组形式(t_period x n_sensor for each single cycle)作为输入。

n_sensors, t_periods = 4, 60 
model = Sequential() 
model.add(Conv1D(100, 6, activation='relu', input_shape=(t_periods, n_sensors))) 
model.add(Conv1D(100, 6, activation='relu')) 
model.add(MaxPooling1D(3)) 
model.add(Conv1D(160, 6, activation='relu')) 
model.add(Conv1D(160, 6, activation='relu')) 
model.add(GlobalAveragePooling1D()) 
model.add(Dropout(0.5)) 
model.add(Dense(3, activation='softmax')) 
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) 
BATCH_SIZE, EPOCHS = 16, 10 
history = model.fit(X_train, y_train, batch_size=BATCH_SIZE, 
 epochs=EPOCHS, validation_split=0.2, verbose=1) 

预测性维护:使用卷积神经网络(CNN)检测传感器故障

在这种情况下只有10个epochs,我们能够取得惊人的成果!

预测性维护:使用卷积神经网络(CNN)检测传感器故障

对测试数据进行预测,机器学习模型达到0.9909的准确度

预测性维护:使用卷积神经网络(CNN)检测传感器故障

因为通过这种方式,我们能够检测并防止系统中可能出现的故障。

可视化结果

如果我们想要对系统状态有一个总体的了解,那么查看图形表示可能会很有用。为了达到这一目标,我们重新利用我们在上面构建的卷积神经网络(CNN)来制作一个解码器,并从每个周期的时间序列中提取特征。使用keras,这可以在一行 Python 代码中实现:

emb_model = Model(inputs=model.input, outputs=model.get_layer('global_average_pooling1d_1').output) 

新模型是一个解码器,它接收与分类任务中使用的NN格式相同的输入数据(t_period x n_sensor for each single cycle),并以嵌入形式返回“预测”,嵌入形式来自具有相对维数的GlobalAveragePooling1D层(每一个循环有160个嵌入变量)。

使用我们的编码器在测试数据上计算预测,采用技术来减小尺寸(如PCA或T-SNE)并绘制结果,我们可以看到:

tsne = TSNE(n_components=2, random_state=42, n_iter=300, perplexity=5) 
T = tsne.fit_transform(test_cycle_emb) 
fig, ax = plt.subplots(figsize=(16,9)) 
colors = {0:'red', 1:'blue', 2:'yellow'} 
ax.scatter(T.T[0], T.T[1], c=[colors[i] for i in y_test])  
plt.show() 

预测性维护:使用卷积神经网络(CNN)检测传感器故障

预测性维护:使用卷积神经网络(CNN)检测传感器故障

TSNE用于测试数据的循环嵌入

每个点都表示测试集中的一个循环,相对颜色是Cooler条件的目标类。可以看出如何很好地定义冷却器组件的目标值之间的区别。这种方法是我们模型性能的关键指标。

最后


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

网络心理学

网络心理学

玛丽•艾肯 (Mary Aiken) / 中信出版社 / 2018-8-1 / CNY 58.00

《五十度灰》如何利用恋物心理,成为全球仅次于《圣经》的畅销读物? 为什么相对于亲朋好友,你更愿意向网络陌生人敞开心扉? 上网时总感觉时间飞逝,原来是网络的时间扭曲效应? 网络游戏中埋伏了哪些“上瘾”机关,暗中操控着你的行为? 为什么科技越发达,我们就越怕死? ...... 网络空间是一个巨大的兔子洞,里面集合了新奇、刺激、喜悦、痛苦、不安等各种元素。在日复一日的......一起来看看 《网络心理学》 这本书的介绍吧!

图片转BASE64编码
图片转BASE64编码

在线图片转Base64编码工具

Base64 编码/解码
Base64 编码/解码

Base64 编码/解码

RGB CMYK 转换工具
RGB CMYK 转换工具

RGB CMYK 互转工具