手工计算神经网络第三期:数据读取与完成训练

栏目: 数据库 · 发布时间: 5年前

内容简介:小伙伴们大家好呀~~用Numpy搭建神经网络,我们已经来到第三期了。第一期文摘菌教大家如何用Numpy搭建一个简单的神经网络,完成了前馈部分。第二期为大家带来了梯度下降相关的知识点。这一期,教大家如何读取数据集,以及将数据集用于神经网络的训练,和上两期一样,这次依然用Numpy实现。在开始代码之前,文摘菌先带大家看看今天我们使用的数据集。

手工计算神经网络第三期:数据读取与完成训练

大数据文摘出品

作者:蒋宝尚

小伙伴们大家好呀~~用Numpy搭建神经网络,我们已经来到第三期了。第一期文摘菌教大家如何用Numpy搭建一个简单的神经网络,完成了前馈部分。第二期为大家带来了梯度下降相关的知识点。

这一期,教大家如何读取数据集,以及将数据集用于神经网络的训练,和上两期一样,这次依然用Numpy实现。在开始代码之前,文摘菌先带大家看看今天我们使用的数据集。

数据集介绍

数据集采用著名的MNIST的手写数据集。根据官网介绍,这个数据集有70000个样本,包括60000个训练样本,10000个测试样本。

数据集下载下来之后,文件分为4个部分,分别是:训练集图片、训练集标签、测试集图片、测试集标签。这些数据以二进制的格式储存。

手工计算神经网络第三期:数据读取与完成训练

其中,训练集图片文件的前16个字节是储存了图片的个数,行数以及列数等。训练集标签文件前8个字节储存了图片标签的个数等。测试集的两个文件同理。

手工计算神经网络第三期:数据读取与完成训练

文摘菌下载好的文件存储地址

读取数据


 

train_img_path=r'C:\Users\Dell\MNIST\train-images.idx3-ubyte'

train_lab_path=r'C:\Users\Dell\MNIST\train-labels.idx1-ubyte'

test_img_path=r'C:\Users\Dell\MNIST\t10k-images.idx3-ubyte'

test_lab_path=r'C:\Users\Dell\MNIST\t10k-labels.idx1-ubyte'

根据文件在本地解压后的储存地址,生成四个地址,上面代码中‘r’是转义字符,因为\在 Python 中有特殊的用法,所以需用转义字符明确文件地址。

为了让后面的模型表现更好,我们将训练集拆分,拆成50000个训练集和10000个验证集。

注:验证集 是模型训练过程中单独留出的样本集,它可以用于调整模型的超参数和用于对模型的能力进行初步评估。


 

import struct


train_num=50000

valid_num=10000

test_num=10000


with open(train_img_path,'rb') as f:

struct.unpack('>4i',f.read(16))

tmp_img=np.fromfile(f,dtype=np.uint8).reshape(-1,28*28)

train_img=tmp_img[:train_num] #前五万个数据是训练集

valid_img=tmp_img[train_num:] #第五万到第六万个数据是测试集

with open(test_img_path,'rb') as f:

struct.unpack('>4i',f.read(16))

test_img=np.fromfile(f,dtype=np.uint8).reshape(-1,28*28)


with open(train_lab_path,'rb') as f:

struct.unpack('>2i',f.read(8))

tmp_lab=np.fromfile(f,dtype=np.uint8)

train_lab=tmp_lab[:train_num]

valid_lab=tmp_lab[train_num:]


with open(test_lab_path,'rb') as f:

struct.unpack('>2i',f.read(8))

test_lab=np.fromfile(f,dtype=np.uint8)

因为,文件是以二进制的格式储存,所以数据读取方式是‘rb’。又因为我们需要数据以阿拉伯数字的方式显示。所以这里用到了Python的struct包。 struct.unpack('>4i',f.read(16)) 中的>号代表字节存储的方向,i是整数,4代表需要前4个整数。f.read(16)是指读取16个字节,即4个整数,因为一个整数等于4个字节。

reshape(-1,28*28) :如果参数中存在-1,表示该参数由其他参数来决定.-1是将一维数组转换为二维的矩阵,并且第二个参数是表示每一行数的个数。

注:fromfile的用法 np.fromfile (frame, dtype=np.float, count=‐1, sep=''),其中:frame : 文件、字符串。dtype :读取的数据类型。count : 读入元素个数,‐1表示读入整个文件。sep : 数据分割字符串。

文件读取完成,接下来按照用图片的方式显示数据。


 

import matplotlib.pyplot as plt

def show_train(index):

plt.imshow(train_img[index].reshape(28,28),cmap='gray')

print('label:{}'.format(train_lab[index]))

def show_test(index):

plt.imshow(train_img[index].reshape(28,28),cmap='gray')

print('label:{}'.format(test_lab[index]))

def valid_train(index):

plt.imshow(valid_img[index].reshape(28,28),cmap='gray')

print('label:{}'.format(valid_lab[index]))

注意,如果不定义 cmap='gray' ,图片的底色会非常奇怪。

手工计算神经网络第三期:数据读取与完成训练        

测试一下,定义完函数之后,显示的是这样的~

数据显示和读取完成,接下来开始训练参数。

训练数据

在开始之前,为了能够上下衔接,我们把第一次课程的代码贴上来~


 

def tanh(x):

return np.tanh(x)


def softmax(x):

exp = np.exp(x-x.max())

return exp/exp.sum()

dimensions = [28*28,10]

activation = [tanh,softmax]

distribution=[

{

'b':[0,0]

},{

'b':[0,0],

'w':[-math.sqrt(6/(dimensions[0]+dimensions[1])),math.sqrt(6/(dimensions[0]+dimensions[1]))]

}]


# 初始化参数b

def init_parameters_b(layer):

dist = distribution[layer]['b']

return np.random.rand(dimensions[layer])*(dist[1]-dist[0])+dist[0]

# 初始化参数w

def init_parameters_w(layer):

dist = distribution[layer]['w']

return np.random.rand(dimensions[layer-1],dimensions[layer])*(dist[1]-dist[0])+dist[0]


#初始化参数方法

def init_parameters():

parameter=[]

for i in range(len(distribution)):

layer_parameter={}

for j in distribution[i].keys():

if j=='b':

layer_parameter['b'] = init_parameters_b(i)

continue;

if j=='w':

layer_parameter['w'] = init_parameters_w(i)

continue

parameter.append(layer_parameter)

return parameter


# 预测函数

def predict(img,init_parameters):

l0_in = img+parameters[0]['b']

l0_out = activation[0](l0_in)

l1_in = np.dot(l0_out,parameters[1]['w'])+parameters[1]['b']

l1_out = activation[1](l1_in)

return l1_out

先定义两个激活函数的导数,导数的具体推到过程在这里不呈现,感兴趣的同学可以自行搜索。


 

def d_softmax(data):

sm = softmax(data)

return np.diag(sm)-np.outer(sm,sm)


def d_tanh(data):

return 1/(np.cosh(data))**2


differential = {softmax:d_softmax,tanh:d_tanh}

其中tanh的导数 是 np.diag(1/(np.cosh(data))**2) ,进行优化后的结果是 1/(np.cosh(data))**2

注:diag生成对角矩阵 ,outer函数的作用是第一个参数挨个乘以第二个参数得到矩阵

然后定义一个字典,并将数解析为某一位置为1的一维矩阵


 

differential = {softmax:d_softmax,tanh:d_tanh}

onehot = np.identity(dimensions[-1])

求平方差函数,其中parameters是我们在第一次课程定义的那个初始化的参数,在训练的过程中,会自动更新。


 

def sqr_loss(img,lab,parameters):

y_pred = predict(img,parameters)

y = onehot[lab]

diff = y-y_pred

return np.dot(diff,diff)

计算梯度


 

def grad_parameters(img,lab,init_parameters):

l0_in = img+parameters[0]['b']

l0_out = activation[0](l0_in)

l1_in = np.dot(l0_out,parameters[1]['w'])+parameters[1]['b']

l1_out = activation[1](l1_in)

diff = onehot[lab]-l1_out

act1 = np.dot(differential[activation[1]](l1_in),diff)

grad_b1 = -2*act1

grad_w1 = -2*np.outer(l0_out,act1)

# 与上文优化d_tanh有关,将矩阵乘法化为数组乘以矩阵

grad_b0 = -2*differential[activation[0]](l0_in)*np.dot(parameters[1]['w'],act1)

return {'b1':grad_b1,'w1':grad_w1,'b0':grad_b0}

这次的梯度计算公式用到了公式:(y_predict-y)^2,根据复合函数求导,所以有-2(y_prdict-y)乘以相关的导数,这也是grad_b1后面-2的来历。

按理说应该更加导数的定义[f(x+h)-f(x)]/h验证下我们的梯度求的对不对,为了照顾新手同学对神经网络的理解过程,这一步在这儿省略了哈。

下面进入训练环节,我们将数据以batch的方式输入,每个batch定位包含100个图片。 batch_size=100 。梯度的获取是用平均求得的,代码体现在: grad_accu[key]/=batch_size。


 

def train_batch(current_batch,parameters):

grad_accu = grad_parameters(train_img[current_batch*batch_size+0],train_lab[current_batch*batch_size+0],parameters)

for img_i in range(1,batch_size):

grad_tmp = grad_parameters(train_img[current_batch*batch_size+img_i],train_lab[current_batch*batch_size+img_i],parameters)

for key in grad_accu.keys():

grad_accu[key] += grad_tmp[key]

for key in grad_accu.keys():

grad_accu[key]/=batch_size

return grad_accu


import copy

def combine_parameters(parameters,grad,learn_rate):

parameter_tmp = copy.deepcopy(parameters)

parameter_tmp[0]['b'] -= learn_rate*grad['b0']

parameter_tmp[1]['b'] -= learn_rate*grad['b1']

parameter_tmp[1]['w'] -= learn_rate*grad['w1']

return parameter_tmp

采用copy机制,是避免parameters变化影响全局的训练, copy.deepcopy 可以重新拷贝不影响原来的数据。

并且这里用到了公式:

手工计算神经网络第三期:数据读取与完成训练      

然后定义学习率:


 

def learn_self(learn_rate):

for i in range(train_num//batch_size):

if i%100 == 99:

print("running batch {}/{}".format(i+1,train_num//batch_size))

grad_tmp = train_batch(i,parameters)

global parameters

parameters = combine_parameters(parameters,grad_tmp,learn_rate)

里面的if语句可以让我们看到神经网络训练的进度。

手工计算神经网络第三期:数据读取与完成训练      

到这里,我们就完成了神经网络的一次训练,为了验证准确度如何,我们可以用验证集看看准确度如何。

定义验证集的损失:


 

def valid_loss(parameters):

loss_accu = 0

for img_i in range(valid_num):

loss_accu+=sqr_loss(valid_img[img_i],valid_lab[img_i],parameters)

return loss_accu

计算准确度:


 

def valid_accuracy(parameters):

correct = [predict(valid_img[img_i],parameters).argmax()==valid_lab[img_i] for img_i in range(valid_num) ]

print("validation accuracy:{}".format(correct.count(True)/len(correct)))

最后得到结果:

手工计算神经网络第三期:数据读取与完成训练      

有90%的准确度哎~结果还好,还好,毕竟没有怎么调学习率以及解决过拟合。

好了,这一期的内容就到这了,内容有些多大家多多消化,下一期我们讲讲怎么调节学习率以及看看更复杂的神经网络。

*注:此篇文章受B站up主大野喵渣的启发,并参考了其代码,感兴趣的同学可以去B站观看他关于神经网络的教学视频,以及到他的Github地址逛逛。

视频地址与Github:

https://www.bilibili.com/video/av51197008

https://github.com/YQGong

实习/全职编辑记者招聘ing

加入我们,亲身体验一家专业科技媒体采写的每个细节,在最有前景的行业,和一群遍布全球最优秀的人一起成长。坐标北京·清华东门,在大数据文摘主页对话页回复 “招聘” 了解详情。简历请直接发送至zz@bigdatadigest.cn

手工计算神经网络第三期:数据读取与完成训练

点「在看」的人都变好看了哦


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Lean Analytics

Lean Analytics

Alistair Croll、Benjamin Yoskovitz / O'Reilly Media / 2013-3-18 / USD 29.99

If you're involved with a startup, analytics help you find your way to the right product and market before the money runs out. But with a flood of information available, where do you start? This book ......一起来看看 《Lean Analytics》 这本书的介绍吧!

JS 压缩/解压工具
JS 压缩/解压工具

在线压缩/解压 JS 代码

图片转BASE64编码
图片转BASE64编码

在线图片转Base64编码工具

Markdown 在线编辑器
Markdown 在线编辑器

Markdown 在线编辑器