爬取京东生鲜的商品数据和评论数据

栏目: jQuery · 发布时间: 5年前

内容简介:很久以前,爬了京东的生鲜页面,鞋子想把代码发出来共享首先简明,爬取 商品数据

很久以前,爬了京东的生鲜页面,鞋子想把代码发出来共享

爬取京东生鲜的商品数据和评论数据

首先简明,爬取 商品数据 采用selenium操作chrome模拟浏览器动态渲染页面+ajax加载评论

具体的看下面的说明

所需内容:

商品小分类名称(苹果,橙子等)

商品名称(烟台红富士苹果 5kg 一级铂金大果 单果230-320g 新鲜水果)

商品总评论数量

商品好评率

评论星级

评论长度

评论点赞数量

评论回复数量

评论文本内容

评论者等级

评论发表距抓取的天数(days)

抓取部分带有追评的评论:追评文本内容、追评与初评相距时间

以上是这次任务的需求

爬取京东生鲜的商品数据和评论数据

这个页面大部分的信息都是动态渲染出来的,所以要用selenium

爬取京东生鲜的商品数据和评论数据

可以看到,要找到评论不是去常见的HXR而是JS,peoduct开头的就是评论信息

Request URL: https://sclub.jd.com/comment/...

Request Method: GET

Status Code: 200

Remote Address: 117.148.129.129:443

Referrer Policy: no-referrer-when-downgrade

在这个url中,查询字符串中的大部分参数不是必须的

def make_url(baseurl, page=0, score=0, productId='3756271'):
    data1 = {
        'callback': 'fetchJSON_comment98vv7490',
        'productId': productId,
        'score': score,
        'sortType': '6',
        'page': page,
        'pageSize': '10',
        'isShadowSku': '0',  #
        'fold': '1',  #
    }
    url = baseurl + urlencode(data1)
    return url

具体的可以在代码中体现。

下面我要贴代码了,坐稳扶好,不想复制的话,可以去我的github上下载。

# https://www.jd.com/allSort.aspx
import requests
from pyquery import PyQuery as pq
from prettyprinter import cpprint
import json
from urllib.parse import urlencode
from selenium import webdriver
from selenium.webdriver.support.wait import WebDriverWait
from selenium.webdriver.common.by import By
from selenium.webdriver.support import expected_conditions as EC
import time
import csv
import datetime
import sys


def get_ajax(url):
    headers = {
        'referer': 'https://item.jd.com/3756271.html',  # referer: https://item.jd.com/3756271.html
        'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/70.0.3538.110 Safari/537.36',
    }
    response = requests.get(url, headers=headers)
    return json.loads(response.text[26:-2])


def make_url(baseurl, page=0, score=0, productId='3756271'):
    data1 = {
        'callback': 'fetchJSON_comment98vv7490',
        'productId': productId,
        'score': score,
        'sortType': '6',
        'page': page,
        'pageSize': '10',
        'isShadowSku': '0',  #
        'fold': '1',  #
    }
    url = baseurl + urlencode(data1)
    return url


def parse_json(rjson, url=None):
    for comment in rjson.get('comments'):
        item = {}
        item['url'] = url
        item['评论星级'] = comment.get('score')
        item['评论长度'] = len(comment.get('content'))
        item['评论点赞数量'] = comment.get('usefulVoteCount')
        item['评论回复数量'] = comment.get('replyCount')
        item['评论文本内容'] = comment.get('content')
        item['评论者等级'] = comment.get('userLevelId')
        try:
            date1 = time.strptime(comment.get('creationTime'), "%Y-%m-%d %H:%M:%S")
            date2 = time.localtime(time.time())
            date1 = datetime.datetime(date1[0], date1[1], date1[2])
            date2 = datetime.datetime(date2[0], date2[1], date2[2])
            item['评论发表距抓取的天数(days)'] = str((date2 - date1).days)
        except Exception as error:
            print('error is >>>', error)
            item['评论发表距抓取的天数(days)'] = ''
        if comment.get('afterUserComment', {}).get('hAfterUserComment', {}).get('content', '') == '此用户未填写评价内容':
            item['追评文本内容'] = ''
        else:
            item['追评文本内容'] = comment.get('afterUserComment', {}).get('hAfterUserComment', {}).get('content', '')
        try:
            date1 = time.strptime(comment.get('afterUserComment', {}).get('created', ''), "%Y-%m-%d %H:%M:%S")
            date2 = time.localtime(time.time())
            date1 = datetime.datetime(date1[0], date1[1], date1[2])
            date2 = datetime.datetime(date2[0], date2[1], date2[2])
            item['追评与初评相距时间'] = str((date2 - date1).days)
        except Exception:
            item['追评与初评相距时间'] = ''
        if item['追评文本内容'] == '':
            item['追评与初评相距时间'] = ''
        yield item


def save_csv_merinfo(item):
    with open(FILENAME_MER, 'a', encoding=ENCODING, newline='') as f:
        writer = csv.DictWriter(f, fieldnames=fieldnames_merinfo)
        # writer.writeheader()
        writer.writerow(item)


def save_csv_cominfo(item):
    with open(FILENAME_COM, 'a', encoding=ENCODING, newline='') as f:
        writer = csv.DictWriter(f, fieldnames=fieldnames_cominfo)
        # writer.writeheader()
        writer.writerow(item)


def get_page(url):
    browser.get(url)
    submit = wait.until(EC.presence_of_element_located((By.XPATH, '//div[contains(@class,"tab-main")]/ul/li[5]')))
    time.sleep(2)
    for i in range(30):
        browser.execute_script("window.scrollBy(0,50)")
        time.sleep(0.1)
    submit.click()
    time.sleep(3)
    return browser.page_source


def parse_page(html, url):
    page_item = {}
    doc = pq(html, parser='html')
    page_item['url'] = url
    page_item['商品小分类名称'] = doc('#crumb-wrap > div > div.crumb.fl.clearfix > div:nth-child(5) > a').text()
    page_item['商品名称'] = doc('div.itemInfo-wrap div.sku-name').text()
    page_item['商品总评论数量'] = doc('#detail > div.tab-main.large > ul > li.current > s').text().replace('(', '').replace(
        ')', '')
    page_item['商品好评率'] = doc('#comment > div.mc > div.comment-info.J-comment-info > div.comment-percent > div').text()
    ##comment > div.mc > div.comment-info.J-comment-info > div.comment-percent > div
    return page_item


def csv_create():
    with open(FILENAME_MER, 'w', encoding=ENCODING, newline='') as f:
        writer = csv.writer(f)
        writer.writerow(fieldnames_merinfo)

    with open(FILENAME_COM, 'w', encoding=ENCODING, newline='') as f:
        writer = csv.writer(f)
        writer.writerow(fieldnames_cominfo)


def crawl_all_page_url():
    global ALL_PAGE_URL
    browser = webdriver.Chrome()
    wait = WebDriverWait(browser, 20)

    browser.get('https://www.jd.com/allSort.aspx')
    wait.until(EC.presence_of_element_located(
        (By.XPATH, '/html/body/div[5]/div[2]/div[1]/div[2]/div[2]/div[9]/div[2]/div[3]')))

    CASE = []
    for i in range(10):  # 水果
        initcase = '/html/body/div[5]/div[2]/div[1]/div[2]/div[2]/div[9]/div[2]/div[3]/dl[2]/dd/a[{}]'.format(i + 1)
        CASE.append(initcase)
    for i in range(4):  # 猪肉羊肉
        initcase = '/html/body/div[5]/div[2]/div[1]/div[2]/div[2]/div[9]/div[2]/div[3]/dl[3]/dd/a[{}]'.format(i + 1)
        CASE.append(initcase)
    for i in range(8):  # 海鲜水产
        initcase = '/html/body/div[5]/div[2]/div[1]/div[2]/div[2]/div[9]/div[2]/div[3]/dl[4]/dd/a[{}]'.format(i + 1)
        CASE.append(initcase)
    for i in range(4):  # 禽肉蛋白
        initcase = '/html/body/div[5]/div[2]/div[1]/div[2]/div[2]/div[9]/div[2]/div[3]/dl[5]/dd/a[{}]'.format(i + 1)
        CASE.append(initcase)
    for i in range(6):  # 冷冻食品
        initcase = '/html/body/div[5]/div[2]/div[1]/div[2]/div[2]/div[9]/div[2]/div[3]/dl[6]/dd/a[{}]'.format(i + 1)
        CASE.append(initcase)
    # 规则只要更改range里面的值和dl[]里面的值,可高度扩展

    for case in CASE:
        print('>>>>>>>>>')
        submit = wait.until(EC.element_to_be_clickable(
            (By.XPATH, case)))
        submit.click()

        print(browser.current_url)

        handle = browser.current_window_handle
        handles = browser.window_handles
        for newhandle in handles:
            if newhandle != handle:
                browser.switch_to.window(newhandle)
        time.sleep(1.5)
        wait.until(EC.presence_of_element_located((By.XPATH, '//div[@id="plist"]/ul[contains(@class,"gl-warp")]')))
        doc = pq(browser.page_source, parser='html')
        for li in list(doc('div#plist ul.gl-warp li').items())[:10]:
            res = 'https:' + str(li('div div.p-commit-n strong a').attr('href')).replace('#comment', '')
            print(res)
            ALL_PAGE_URL.append(res)
        time.sleep(1.5)
        browser.close()
        browser.switch_to.window(handle)


def load_all_page_url():
    global ALL_PAGE_URL
    with open(FILENAME_CACHE, 'r', encoding='utf-8') as f:
        reader = csv.reader(f)
        for item in reader:
            ALL_PAGE_URL.append(item[0])


if __name__ == '__main__':
    # 前期准备>>>>>>>>>>
    browser = webdriver.Chrome()  # selenium模拟浏览器
    wait = WebDriverWait(browser, 20)
    MAXINDEX = 7  # 最大请求评论页数,为了控制评论数量在500条左右,应该设置为35左右,35时略大于500(网页评论非无限下拉)

    # 用户自定义配置区********************************
    TIMESLEEP = 2  # 睡眠间隔
    FILENAME_MER = 'merinfo_test.csv'  # 商品信息的文件名
    FILENAME_COM = 'cominfo_test.csv'  # 评论信息的文件名
    FILENAME_CACHE = 'cache.csv'
    ENCODING = 'UTF-8'  # 保存的CSV的编码
    # **********************************************

    # csv文件的字段
    fieldnames_merinfo = ['url', '商品小分类名称', '商品名称', '商品总评论数量', '商品好评率']
    fieldnames_cominfo = ['url', '评论星级', '评论长度', '评论点赞数量', '评论回复数量', '评论文本内容', '评论者等级', '评论发表距抓取的天数(days)', '追评文本内容',
                          '追评与初评相距时间']
    # <<<<<<<<<<<<<<<<<

    start = time.time()

    # csv_create()  # 重置
    # 去重模块>>>
    URLSET = []  # 已存在的url的集合
    with open(FILENAME_MER, 'r', encoding=ENCODING) as f:
        reader = csv.reader(f)
        for res in reader:
            URLSET.append(res[0])
    print('URLSET is', URLSET)
    # 爬取商品信息
    ALL_PAGE_URL = []  # 所有的网页链接
    load_all_page_url()  # 这两个函数要二选一,load_all_page_url会从本地的cache.csv载入,速度更快,脱机工作,不占用网络
    # crawl_all_page_url() # 这两个函数要二选一,load_all_page_url会从本地的cache.csv载入,速度更快,脱机工作,不占用网络
    for page_url in ALL_PAGE_URL:
        if page_url not in URLSET:
            URLSET.append(page_url)  # 动态去重
            try:
                html = get_page(page_url)  # 请求网页,selenium动态渲染
                item_mer = parse_page(html, url=page_url)  # 解析网页,pyquery
                cpprint(item_mer)

                # 爬取评论信息,ajax
                Flag = 0  # 计数器
                ITEMS = []
                baseurl = 'https://sclub.jd.com/comment/productPageComments.action?'
                for score in [5, 3, 2, 1]:  # 0全部评论,5追评,3好评,2中评,1差评
                    if score == 5:
                        MAXINDEX_TEMP = MAXINDEX
                    else:
                        MAXINDEX_TEMP = int(MAXINDEX / 7)  # 控制比例为7:1:1:1
                    for index in range(MAXINDEX_TEMP):
                        time.sleep(TIMESLEEP)
                        url = make_url(baseurl, page=index, score=score,
                                       productId=''.join(list(filter(str.isdigit, page_url))))  # 构造url
                        try:
                            json_ = get_ajax(url)  # 进行ajax请求
                            if len(json_.get('comments')) != 0:
                                for item in parse_json(json_, url=page_url):  # 解析json
                                    cpprint(item)
                                    ITEMS.append(item)
                                    Flag += 1
                            else:
                                break
                        except Exception as error:
                            print('AJAX请求发生错误{}>>>'.format(error))
                            print('url is {}'.format(url))
                            print(str(datetime.datetime.now()))
                            sys.exit(0)  # ajax请求出错时退出程序,确保数据完整性
                # 一个网页的商品信息和评论信息都爬取完毕时,保存数据
                save_csv_merinfo(item_mer)  # 保存商品信息

                for item in ITEMS:  # 保存评论信息
                    try:
                        save_csv_cominfo(item)
                    except Exception as error:
                        print(error)
                print("保存了{}条评论".format(Flag))
            except Exception as error:
                print('网页请求发生错误{}>>>'.format(error))
        print('一个网页请求已经结束>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>')
        # time.sleep(TIMESLEEP)

    end = time.time()
    print('总共用时{}秒'.format(end - start))

还是写了一些注释的,不懂得可以在评论中问。暂时这样吧!


以上所述就是小编给大家介绍的《爬取京东生鲜的商品数据和评论数据》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

产品经理全栈运营实战笔记

产品经理全栈运营实战笔记

林俊宇 / 化学工业出版社 / 49.8元

本书凝结作者多年的产品运营经验,读者会看到很多创业公司做运营的经验,书中列举了几十个互联网产品的运营案例去解析如何真正做好一个产品的冷启动到发展期再到平稳期。本书主要分为六篇:互联网运营的全面貌;我的运营生涯;后产品时代的运营之道;揭秘刷屏事件的背后运营;技能学习;深度思考。本书有很多关于产品运营的基础知识,会帮助你做好、做透。而且将理论和作者自己的案例以及其他人的运营案例结合起来,会让读者更容易......一起来看看 《产品经理全栈运营实战笔记》 这本书的介绍吧!

JSON 在线解析
JSON 在线解析

在线 JSON 格式化工具

HTML 编码/解码
HTML 编码/解码

HTML 编码/解码

RGB CMYK 转换工具
RGB CMYK 转换工具

RGB CMYK 互转工具