内容简介:本文首发于微信公众号:"算法与编程之美",欢迎关注,及时了解更多此系列文章。
欢迎点击「算法与编程之美」↑关注我们!
本文首发于微信公众号:"算法与编程之美",欢迎关注,及时了解更多此系列文章。
深度学习实战 fashion-mnist数据集预处理技术分析
通过分析keras提供的预定义图像数据集,总结如下:
(1) mnist数据集采用numpy的npz方式以一个文件的方式存储文件,加载后就可以直接得到四个数组,非常方便。
(2) fshion-mnist数据集利用四个gz格式压缩包存储四个数组的内容,加载后利用numpy的frombuffer()方式加载数组。
(3) cifar数据集则是将训练集分为五个文件,每个一万条,测试集一个文件,利用pickle的dump()方法以字典的方式写入文件,然后通过pickle的load()方法加载字典,在字典中保存了data和labels.
三种不同的方式处理了三种数据集,各有特点,对于今后处理图像数据集具有非常好的借鉴价值。 今后在做图像分析处理任务的时候,可以将任务分为两个阶段,第一阶段为数据预处理,第二阶段为数据分析。
第一阶段的主要任务是收集有标签的图片数据,进行清洗,然后以numpy数组(x_train, y_train, x_test, y_test)格式的形式保存为npz格式的文件。
第二阶段直接读取npz文件就可以得到x_train, y_train, x_test, y_test四个数组,就可以非常方便的得到数据,建立模型,开始分析。
两个任务以pipeline的方式进行,可以极大的提升效率。
温馨提示: 点击页面右下角 “写留言”发表评论,期待您的参与!期待您的转发!
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网
猜你喜欢:- 深度学习实战 mnist数据集预处理技术分析
- 深度学习实战 cifar数据集预处理技术分析
- 深度学习实战 fashion-mnist数据集预处理技术分析
- Python环境安装及数据基本预处理-大数据ML样本集案例实战
- Pandas多维特征数据预处理及sklearn数据不均衡处理相关技术实践-大数据ML样本集案例实战
- 时间序列数据的预处理及基于ARIMA模型进行趋势预测-大数据ML样本集案例实战
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
TensorFlow实战
黄文坚、唐源 / 电子工业出版社 / 2017-2-1 / 79
Google近日发布了TensorFlow 1.0候选版,这个稳定版将是深度学习框架发展中的里程碑的一步。自TensorFlow于2015年底正式开源,距今已有一年多,这期间TensorFlow不断给人以惊喜,推出了分布式版本,服务框架TensorFlow Serving,可视化工具TensorFlow,上层封装TF.Learn,其他语言(Go、Java、Rust、Haskell)的绑定、Wind......一起来看看 《TensorFlow实战》 这本书的介绍吧!