图解AQS原理之ReentrantLock详解-公平锁

栏目: Java · 发布时间: 5年前

内容简介:前面已经讲解了关于AQS的非公平锁模式,关于前文连接地址:温馨提示:读本文内容建议结合之前写的非公平,前篇设计了很多基础性内容

概述

前面已经讲解了关于AQS的非公平锁模式,关于 NonfairSync 非公平锁,内部其实告诉我们谁先争抢到锁谁就先获得资源,下面就来分析一下公平锁 FairSync 内部是如何实现公平的?如果没有看过非公平锁的先去了解下非公平锁,因为这篇文章前面不会讲太多内部结构,直接会对源码进行分析

前文连接地址: 图解AQS原理之ReentrantLock详解-非公平锁

温馨提示:读本文内容建议结合之前写的非公平,前篇设计了很多基础性内容

源码分析

在源码分析之前,我们先来看一下 ReentrantLock 如何切换获取锁的模式呢?其实是在构造器中传递指定的类型变量来控制使用锁的方式,如下所示:

public ReentrantLock(boolean fair) {
    sync = fair ? new FairSync() : new NonfairSync();
}

fair 参数指定为true时,代表的是公平锁,如果指定为false则使用的非公平,无参的构造函数默认使用的是非公平模式,如下所示:

public ReentrantLock() {
    sync = new NonfairSync();
}

接下来我们以一个例子来进行后面的说明:

public class ReentrantLockDemo {

    public static void main(String[] args) throws Exception {
        AddDemo runnalbeDemo = new AddDemo();
        Thread thread = new Thread(runnalbeDemo::add);
        thread.start();
        Thread.sleep(500);
        Thread thread1 = new Thread(runnalbeDemo::add);
        thread1.start();
        System.out.println(runnalbeDemo.getCount());
    }

    private static class AddDemo {
        private final AtomicInteger count = new AtomicInteger();
        private final ReentrantLock reentrantLock = new ReentrantLock(true);
        private final Condition condition = reentrantLock.newCondition();

        private void add() {
            try {
                reentrantLock.lockInterruptibly();
                count.getAndIncrement();
            } catch (Exception ex) {
                System.out.println("线程被中断了");
            } finally {
//                reentrantLock.unlock();
            }
        }

        int getCount() {
            return count.get();
        }
    }
}

我们通过源码可以看到这里我们启动了两个线程,两个线程分别进行同步锁操作,这里我并没有释放掉锁,因为方便分析队列的情况,当然你也可以在内部写一个死循环,不释放锁就可以了,我这里简单的不释放锁,使用的是可中断的获取锁操作方法 lockInterruptibly ,这里内部的原理我们上一篇文章中已经讲解过了,这里并不过多的去分析内部原理,这个 ReentrantLocklockInterruptibly 调用内部类 AQSacquireInterruptibly ,但是其实是 FairSync 内部类继承了内部类 Sync ,而内部类 Sync 有继承了 AbstractQueuedSynchronizer 简称AQS, acquireInterruptibly 源码信息如下所示:

public final void acquireInterruptibly(int arg)
        throws InterruptedException {
    if (Thread.interrupted())
        throw new InterruptedException();
    if (!tryAcquire(arg))
        doAcquireInterruptibly(arg);
}

这里我们通过上一篇文章得知 tryAcquire 是需要子类去实现的方法,我们在例子中指定了使用的是公平锁,所以 tryAcquire 方法的实现是在 ReentrentLockFairSync 类中,我们来具体看一下这个方法,重点也在这个方法中其他的其实都是一样的,因为用的方法都会一样的非公平和公平锁的调用,唯独不一样的就是子类实现的方法是不相同的,接下来我们就来看一下公平锁的 tryAcquire 是如何实现的?

protected final boolean tryAcquire(int acquires) {
    final Thread current = Thread.currentThread();
    int c = getState();
    if (c == 0) {
        if (!hasQueuedPredecessors() &&                                //判断是否有等待的线程在队列中
            compareAndSetState(0, acquires)) {                //尝试争抢锁操作
            setExclusiveOwnerThread(current);                    //设置当前线程独占锁资源
            return true;                                                            //获得锁成功
        }
    }
    else if (current == getExclusiveOwnerThread()) {    //当前线程和独占锁资源的线程一致,则可以重入
        int nextc = c + acquires;                                            //state递增
        if (nextc < 0)
            throw new Error("Maximum lock count exceeded");
        setState(nextc);                                                            //设置state状态
        return true;                                                                    //获得锁成功
    }
    return false;                                                                            //获得锁失败
}

对比非公平锁的 NonfairSync 类的 tryAcquire 方法,其实就是在锁可用的情况下增加了一个判断条件,这个判断方法就是 hasQueuedPredecessors ,从方法的名称来看说的是有等待的线程队列,换句话说已经有人在排队了,新来的线程你就不能加塞,而非公平模式的谁先争抢到锁就是谁的,管你先来不先来,接下来我们具体看一下这个

hasQueuedPredecessors 方法源码:

public final boolean hasQueuedPredecessors() {
    // The correctness of this depends on head being initialized
    // before tail and on head.next being accurate if the current
    // thread is first in queue.
    Node t = tail; // 获得尾节点
    Node h = head; // 获得头节点
    Node s;
    return h != t &&    //头节点和尾节点相同代表队列为空        
        ((s = h.next) == null || s.thread != Thread.currentThread());    //头节点的next节点为空代表头节点,以及s.thread不是当前线程不是自己的话代表队列中存在元素
}

通过上面的源码信息,可以得出其实内部主要就是判断有没有排队等待的节点,队列是否为空,如果为空的话则可以争抢锁,如果队列不为空,伙计你必须老老实实给我排队去,除非占有锁的线程和请求锁的线程是一样的,否则还是老老实实排队去,这就是公平模式的锁操作,还有一个 lock 方法,公平模式的 lock 方法,没有直接上来先获取锁,而是先尝试获得锁直接调用 AQSaquire 方法进行尝试获取锁,下面是 FairSync 源码:

static final class FairSync extends Sync {
    private static final long serialVersionUID = -3000897897090466540L;

    final void lock() {
        acquire(1);                                    //这里直接调用了aquire并没有尝试修改state状态
    }

    /**
     * Fair version of tryAcquire.  Don't grant access unless
     * recursive call or no waiters or is first.
     */
    protected final boolean tryAcquire(int acquires) {
        final Thread current = Thread.currentThread();
        int c = getState();
        if (c == 0) {
            if (!hasQueuedPredecessors() &&
                compareAndSetState(0, acquires)) {
                setExclusiveOwnerThread(current);
                return true;
            }
        }
        else if (current == getExclusiveOwnerThread()) {
            int nextc = c + acquires;
            if (nextc < 0)
                throw new Error("Maximum lock count exceeded");
            setState(nextc);
            return true;
        }
        return false;
    }
}

结束语

本内容主要是结合上篇内容的一个续篇,可以结合上篇然后再看下篇会比较清晰些。


以上所述就是小编给大家介绍的《图解AQS原理之ReentrantLock详解-公平锁》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

JAVA核心技术(卷1)

JAVA核心技术(卷1)

Cay S. Horstmann、Gary Cornell / 杜永萍、邝劲筠、叶乃文 / 机械工业出版社 / 2008-6 / 98.00元

《JAVA核心技术(卷1):基础知识(原书第8版)》是《Java核心技术》的最新版,《Java核心技术》出版以来一直畅销不衰,深受读者青睐,每个新版本都尽可能快地跟上Java开发工具箱发展的步伐,而且每一版都重新改写了的部分内容,以便适应Java的最新特性。本版也不例外,它反遇了Java SE6的新特性。全书共14章,包括Java基本的程序结构、对象与类、继承、接口与内部类、图形程序设计、事件处理......一起来看看 《JAVA核心技术(卷1)》 这本书的介绍吧!

Base64 编码/解码
Base64 编码/解码

Base64 编码/解码

SHA 加密
SHA 加密

SHA 加密工具

RGB CMYK 转换工具
RGB CMYK 转换工具

RGB CMYK 互转工具