内容简介:這是一篇Google Research提出在ICML2019的文章,主要講述如何將現有模型,不用手動條參數的方式,改善模型的效能。目前改善模型的方式主要有三種,透過增廣模型,我們往往能夠取得更好的模型。根據圖片,三種方法的名詞解釋如下。1. Width : filter的數量
這是一篇Google Research提出在ICML2019的文章,主要講述如何將現有模型,不用手動條參數的方式,改善模型的效能。
名詞解釋
目前改善模型的方式主要有三種,透過增廣模型,我們往往能夠取得更好的模型。根據圖片,三種方法的名詞解釋如下。
1. Width : filter的數量
2. Depth 模型的層數
3. Resolution 輸入image的解析度
加大模型
由圖發現接近高精確度時,曲線快速的收斂,此時就算加大模型複雜度,成效也難以提升。
另外,作者發現這三種方式,並不是互相獨立的。從下圖可看出當resolution提升的時候,相對應的depth會變得十分重要。這從直觀上十分容易理解。
組合式加強
經過前述的觀察後,作者提出一個新的思路來加強模型
-compound scaling method-
首先將問題以最佳化的方式描述,限制式為運算平台擁有的的資源。接著不同的depth width resolution 使用αβγ ϕ作為控制的參數,設定最佳化目標ACC(m)×[FLOPS(m)/T]w 。
實驗結果
ImageNet的競賽中,此篇方法在精準度、參數量、運算量都表現最好。
Resnet152提升的速度甚至可以達到5.7倍,十分驚人。
另外作者也有嘗試Cifar10 /100 Standford Car …..不同的dataset,效果也都是最佳。
從CAM圖中發現就算是在imagenet中取得良好分類結果的模型,在熱度圖中的敏感區域也都是模糊不清,但是經過本篇方法scale up的模型在高敏感區域更加集中且精準。
結語
這篇文章提出的想法十分簡單,運用自動化的方式調整模型將能減少大量的人力調參需求,不過深度學習的算法不只運用在分類問題,在偵測、語意分割、動作預測…..不同領域並沒有深入測試,所以是否能在較複雜的任務上使用這種簡單的最佳化方式scale up 模型還需要經過測試才能得知。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网
猜你喜欢:本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
程序设计语言理论基础
米切尔 / 电子工业出版社 / 2006-11 / 68.00元
本书提出了一个框架,用于分析程序设计语言的语法、操作和语义性质,该框架基于称为类型化λ演算的数学系统。λ演算的主要特色是对于函数和其他可计算的值的一种记法,以及一个等式逻辑和用于表达式求值的一组规则。本书中最简单的系统是称为泛代数的一个等式系统,它可以用来公理化和分析通常用于程序设计的许多数据类型。可作为理论计算机科学、软件系统和数学专业的大学本科高年级或者研究生初始学习阶段的教材,同时也适合用于......一起来看看 《程序设计语言理论基础》 这本书的介绍吧!