我的朋友老曹,居然用数据工具搞了这么多事

栏目: 数据库 · 发布时间: 5年前

内容简介:在没有数据驱动意识的情况下,产品、运营工作遇到问题没办法用数据做分析比较,做出解决方案的效率很低。而通过数据分析则能很好解决渠道、运营和产品方面的问题,提升业务、提高了获取数据的效率。老曹刚去的这家互联网电商创业公司,在使用数据方面还处于原始时代,平时看个数据,还要数据分析师频繁地从数据库中拉取数据。由于他们是一个创业公司,没有足够的人力和精力自建大数据分析平台,所以在评估了市面上各种相关产品的接入难易度、产品体验、数据准确性、数据稳定性等方面后,老曹选择了友盟+移动统计(U-App AI版)这款产品作为公

在没有数据驱动意识的情况下,产品、运营工作遇到问题没办法用数据做分析比较,做出解决方案的效率很低。而通过数据分析则能很好解决渠道、运营和产品方面的问题,提升业务、提高了获取数据的效率。

我的朋友老曹,居然用数据 <a href='https://www.codercto.com/tool.html'>工具</a> 搞了这么多事

老曹刚去的这家互联网电商创业公司,在使用数据方面还处于原始时代,平时看个数据,还要数据分析师频繁地从数据库中拉取数据。由于他们是一个创业公司,没有足够的人力和精力自建大数据分析平台,所以在评估了市面上各种相关产品的接入难易度、产品体验、数据准确性、数据稳定性等方面后,老曹选择了友盟+移动统计(U-App AI版)这款产品作为公司的数据分析平台。

刚来公司的时候,老曹就给大家普及了大数据的重要性以及大数据在业务上的应用,各业务同事都对大数据及数据产品充满了期待和兴趣,一听说老曹通过友盟+移动统计(U-App AI版)建立起了公司的大数据分析平台,都跑过来一瞧究竟,看看能不能解决自己在工作中面临的问题。

负责用户增长的妹子昭君,由于最近背了用户增长的KPI,一直被压得喘不过气来,又不知道如何下手,所以跑到老曹身边,一脸期待地看着老曹。

“老曹啊,这个季度老板给我定了要实现10W的用户增长,可是我现在一点思路都没有,我可怎么办啊?”

“首先,让我们来看一下你每次投放的渠道带来的用户质量是什么样的。”

我的朋友老曹,居然用数据工具搞了这么多事

渠道活跃用户对比

“我们打开基础看板-渠道分析-渠道列表页面,拿新增用户这个指标来看,A渠道的要明显高于B、C、D三个渠道;再依次看一下各个渠道活跃用户、活跃用户启动次数、平均单次使用时长、平均日使用时长、次日留存率等数据,我们发现A渠道带来的用户质量也要明显好于B、C、D三个渠道,这说明A渠道给我们带来了高质量的用户。

而看看D渠道,用户的次日留存仅仅9%左右,单次用户使用时长更是只有60s,说明这个渠道的用户质量太差了。这个渠道是不是在做一些类似积分墙之类的这种形式啊,用户单纯是为了刷积分或者收入来下载使用我们的App……”

“接下来是智能拉新,基于友盟+的全域画像洞察高潜用户特征,智能输出人群策略、媒体策略并基于智能投放系统实时优化,实现对高价值用户的精准拉新。”

我的朋友老曹,居然用数据工具搞了这么多事

友盟+移动统计(U-App AI版)智能拉新

“简单来讲就是你在U-App AI版圈定一波目标用户,然后可以把这些用户同步到广点通之类的投放平台,然后你可以根据推广计划针对这些人群进行定向投放,是不是很流畅,是不是很方便?”

“我之前都是在广点通拍脑袋选一个标签投放,现在感觉之前的方法简直太粗暴了,那我应该怎么用呢?”

“这个功能需要提前让研发哥哥们帮你把SDK都集成好了,同时现在接入了广点通和今日头条两家媒体,你可以直接使用。”

“老曹,你真是太厉害了,感觉这个月的KPI有希望了。”昭君在一阵惊喜中跑回了自己的工位。

老曹刚坐下喝了一口水,这时候产品经理玉环又跑过来向老曹抱怨。

“老曹,老板总是觉得我们产品的支付转化率太低了,用户进来不买东西,造成收入太低了,这样公司迟早会垮掉的,可是我又不知道是哪里的问题,应该怎样优化产品功能。”

“关系到公司生死存亡的大事,我们可不能轻视啊,既然你不知道哪里有问题,就让数据来说话。用户在我们的App上是会留下足迹的,例如用户会经过“注册->查看商品详情页->加入购物车->支付”这个页面流程,所以分析支付转化率的问题,就变成了分析这个流程中用户在各个环节转化率的情况。而U-App AI版正好提供了这个功能,可以通过基础看板中的功能使用模块下的页面访问路径来查看,让我们先看一下支付环节的用户访问路径。”

我的朋友老曹,居然用数据工具搞了这么多事

用户支付环节相关访问路径

“这个数据是用户在流程的访问路径的数据情况,用户在注册完后选择商品的10%转化率已经很高了,这主要是因为我们是刚起步,要是在大型电商公司,那么大量的商品,千分之一万分之一都是有可能的。第二步到第三步的转化率实在是太低了,用户加入购物车的比率太低了,我来看一下你的产品设计吧。”

我的朋友老曹,居然用数据工具搞了这么多事

用户访问路径优化产品体验

老曹体验了从商品详情页到加入购物车的环节。

“呃,在商品详情页我怎么没找到购物车的入口啊,”

“购物车在最下面……”玉环仿佛意识到了产品的问题。

“难怪,哪有用户会有耐心一直滑到最后啊,如果商品的描述少还好,一屏完全能够展示,可是如果商品描述太长了,要滑好多次才能找到,你应该把它悬浮并固定在屏幕底部啊。”

“我以后一定用数据驱动,有些情况是我根本想不到的。”玉环郑重说到。

“行了,你也别检讨了,知道以后怎么验证规避问题才是最重要的。”

下午,用户运营妹子大乔和小乔两个妹子一起来找老曹,抱怨现在的用户不仅难伺候,还留不住,用户留存率越来越低,问问老曹能不能提供一些解决办法。

老曹根据她们的问题,思考了片刻,作为一名数据产品经理老司机,怎么能没有解决办法呢!他不急不慢对两个运营妹子说:

“一般用户运营关注的核心问题无非是促活跃、降流失。在用户使用App的生命周期中,一般分为新手阶段、成长阶段、沉默阶段和流失阶段。我们需要时刻关注新手阶段、成长阶段和沉默阶段的高流失风险用户、高沉默风险用户,并且尝试召回流失阶段的高召回潜力用户,以达到防止流失和促进活跃的目的。”

我的朋友老曹,居然用数据工具搞了这么多事

用户生命周期流程图

“我们通过U-App AI版里的用户生命周期功能来看一下,通过数据发现,我们的用户在沉默阶段和流失阶段占的比例还是很大的,大概占了60%多,而且环比还有增加的趋势,这也和你们反映用户留存率比较低的事实相匹配。

其中,在沉默阶段,高流失风险用户为2,136人,这部分用户需要我们用运营手段促进其活跃,防止他们流失;而高召回潜力用户为1,491人,这部分用户需要我们采取一定手段给召回回来,从而进一步成为我们的活跃用户。”

我的朋友老曹,居然用数据工具搞了这么多事

用户生命周期概况

两个妹子听完直点头,“但是我怎么知道这批用户的UserID,然后怎样才能针对这些人来制定活动来把他们召回呢?”

“这就要针对用户生命周期每个阶段用户的功能,点击高召回潜力用户,就会跳入到这批用户的日级别的趋势曲线,可以看到高召回潜力用户的数量在逐渐减少,需要我们进一步采取运营活动来刺激他们。上次你们不是申请了一批优惠券嘛,可以把这批用户设置为用户分群的一个群组,然后给他们Push一些优惠券,然后再观察一下回流数据。”

我的朋友老曹,居然用数据工具搞了这么多事

高召回潜力用户数据图表

我的朋友老曹,居然用数据工具搞了这么多事

高召回潜力用户另存为人群分组

大乔小乔相互望了对方一眼,大呼:“就是这样,多谢老曹啊,我们公司百万用户的目标就靠它了。”

帮渠道、运营和产品的同学解决了问题后,老曹突然想起来他引入友盟+的最初目的是帮助数据分析师妹啊,怎么把这个忘了,于是老曹赶紧给数据分析师妹拉了一个小会,帮她们“脱离苦海”。

“我是来把大好时光还给大家的,也就是让大家脱离天天跑数的重复工作中,这样你们就可以有大把时间去约会了。”

数据分析师妹子听到这个好消息,都投来期待的目光。

“老曹,快告诉我们该怎么做啊。”大家异口同声的说。

“今天要给大家介绍的是友盟+移动统计(U-App AI版),大家可以通过自制看板功能实现对于常规需求的报表化,不用再频繁跑数、给数据,直接自动化生成报表,以后让业务同学自己看就行啦。大家可以通过新建看板,把自己要展示的指标勾选上,然后通过设置展现样式和排版,就可以轻松创建一个日常看板,是不是很方便?大家可以自己操作一下试试。”

我的朋友老曹,居然用数据工具搞了这么多事

友盟+移动统计(U-App AI版)自制看板功能

“哇,真的很方便啊,只要我有了数据表,就可以任意创建报表了,这样我的常规分析需求就都可以自动化放在上面了,好棒啊!”数据分析师秋香说。

“嗯,是的,但是友盟+自制看板这个功能还不是特别完善,其实还可以做得更强大一些。

例如,可以实现数据下钻功能,很多业务指标也只是了解到表面的一些核心数据,缺少对数据更深层次的掌握,不能指导用户发现到底是哪些维度、哪些因素影响了业务的发展,没有实现对数据的深度进一步探索。

例如,在做订单数据报表时,突然有一天发现订单量明显低于同期,灵活的自由下钻功能可以帮我们一键洞察深层数据,提高分析效率,更快、更方便地找出造成订单量下跌的‘罪魁祸首’。

利用数据下钻功能,在报表中只需框选数据异常的点,选择‘下钻’便可分析出到底哪些地区的订单量低 。”老曹喝了一口水接着说。

我的朋友老曹,居然用数据工具搞了这么多事

多维度数据下钻功能

“在下钻维度弹窗中选择地区,可以在地区维度查看这天的订单数据情况。

如下图所示,广州在这一天的支付订单量明显低于其他城市,支付订单量日环比也大幅下降,进而找到了问题的根源所在,接下来就可以针对这一问题采取一些业务上的操作,尽快让广州的支付订单量提升。”

我的朋友老曹,居然用数据工具搞了这么多事

对订单数据异常点通过城市维度下钻后的结果

“嗯,是啊,这个会把分析数据问题的权利更多的交给业务同学,不仅方便了他们,也省去了我们的时间。”数据分析师秋香说。

所以啊,我这朋友老曹,确实还是很厉害的!在没有任何数据驱动意识的情况下,变成了全公司同事都会通过U-App AI版来分析使用数据。无论是在渠道、产品,还是运营场景,都给公司业务带来了极大的提升,更是提高了公司获取数据的效率。

说明:文章中的部分数据为脱敏数据或DEMO数据,不具备真实运营参考价值。

相关阅读

万元悬赏数据高手|2019「友盟杯」数据分析大赛报名启动!

你的坚持值得被肯定|2019「友盟杯」数据分析大赛结果公布

一款家居后APP,如何用增长黑客方法实现从0到40万增长?

产品高于需求:低频产品也可以有高用户活跃度

作者:梁旭鹏,人人都是产品经理专栏作家,《数据产品经理修炼手册》作者

本文为「人人都是产品经理」社区和友盟+联合举办的“2019「友盟杯」数据分析大赛”中获奖作品,未经作者及平台许可,禁止转载

本文部分数据有脱敏处理,非全部真实数据

题图来自Unsplash,基于CC0协议


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Algorithms on Strings, Trees and Sequences

Algorithms on Strings, Trees and Sequences

Dan Gusfield / Cambridge University Press / 1997-5-28 / USD 99.99

String algorithms are a traditional area of study in computer science. In recent years their importance has grown dramatically with the huge increase of electronically stored text and of molecular seq......一起来看看 《Algorithms on Strings, Trees and Sequences》 这本书的介绍吧!

URL 编码/解码
URL 编码/解码

URL 编码/解码

MD5 加密
MD5 加密

MD5 加密工具

HEX HSV 转换工具
HEX HSV 转换工具

HEX HSV 互换工具