二叉树的遍历和查找

栏目: 数据库 · 发布时间: 6年前

内容简介:若二叉树非空,则执行以下操作:若二叉树非空,则执行以下操作:若二叉树非空,则执行以下操作:

前序遍历

若二叉树非空,则执行以下操作:

  1. 访问根结点;
  2. 先序遍历左子树;
  3. 先序遍历右子树

中序遍历

若二叉树非空,则执行以下操作:

  1. 中序遍历左子树;
  2. 访问根结点;
  3. 中序遍历右子树。

后序遍历

若二叉树非空,则执行以下操作:

  1. 后序遍历左子树;
  2. 后序遍历右子树;
  3. 访问根结点

实例说明

graph TD 3-->1 3-->5 1-->2 5-->4 5-->6

对于上面的二叉树而言,

  1. 前序遍历结果: 3 1 2 5 4 6
  2. 中序遍历结果: 1 2 3 4 5 6
  3. 后序遍历结果: 2 1 4 6 5 3

树的遍历代码实现

定义一个树结构

@ToString
class TreeNode {
  int val;
  TreeNode left;
  TreeNode right;

  TreeNode(int x) {
    val = x;
  }
}

定义一个遍历方式的枚举

/**
 * 遍历的方向.
 */
enum Direct {
  /**
   * 中序
   */
  middle,
  /**
   * 前序
   */
  before,
  /**
   * 后序
   */
  after;
}

实现代码

/**
   * 遍历.
   */
  public void print(Direct direct) {
    StringBuffer stringBuffer = new StringBuffer();
    print(stringBuffer, this, direct, "ROOT:");
    System.out.println(stringBuffer.toString());
  }

  private void print(StringBuffer stringBuffer, TreeNode treeNode, Direct direct, String node) {
    if (treeNode != null) {

      if (direct == Direct.before) {
        stringBuffer.append(node + treeNode.val + "\n");
        print(stringBuffer, treeNode.left, direct, "L:");
        print(stringBuffer, treeNode.right, direct, "R:");
      } else if (direct == Direct.middle) {
        print(stringBuffer, treeNode.left, direct, "L:");
        stringBuffer.append(node + treeNode.val + "\n");
        print(stringBuffer, treeNode.right, direct, "R:");
      } else {
        print(stringBuffer, treeNode.left, direct, "L:");
        print(stringBuffer, treeNode.right, direct, "R:");
        stringBuffer.append(node + treeNode.val + "\n");
      }
    }
  }

二叉查询树实现了二分查找法

时间复杂度是Olog(n)到O(n),也就是说它最好的情况是Olog(n),当然运气不好,也就是你查询的是叶子节点,那就是O(n)了。

/*
   * 二分查找,最优时间复杂度OLog(n).
   */
  private TreeNode search(TreeNode x, int key) {
    if (x == null)
      return x;

    int cmp = key - x.val;
    if (cmp < 0)
      return search(x.left, key);
    else if (cmp > 0)
      return search(x.right, key);
    else
      return x;
  }

  public TreeNode search(int key) {
    return search(this, key);
  }
}

对于树的知识还有很多,本文章主要介绍树的遍历和查找!


以上所述就是小编给大家介绍的《二叉树的遍历和查找》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

高效团队开发

高效团队开发

[日] 池田尚史、[日] 藤仓和明、[日] 井上史彰 / 严圣逸 / 人民邮电出版社 / 2015-7 / 49.00

本书以团队开发中所必需的工具的导入方法和使用方法为核心,对团队开发的整体结构进行概括性的说明。内容涉及团队开发中发生的问题、版本管理系统、缺陷管理系统、持续集成、持续交付以及回归测试,并且对“为什么用那个工具”“为什么要这样使用”等开发现场常有的问题进行举例说明。 本书适合初次接手开发团队的项目经理,计划开始新项目的项目经理、Scrum Master,以及现有项目中返工、延期问题频发的开发人......一起来看看 《高效团队开发》 这本书的介绍吧!

RGB转16进制工具
RGB转16进制工具

RGB HEX 互转工具

XML、JSON 在线转换
XML、JSON 在线转换

在线XML、JSON转换工具

RGB CMYK 转换工具
RGB CMYK 转换工具

RGB CMYK 互转工具