谷歌开源缩放模型EfficientNets:ImageNet准确率创纪录,效率提高10倍

栏目: 软件资讯 · 发布时间: 5年前

内容简介:最近,谷歌基于AutoML开发了虽然准确率只比之前最好的Gpipe提高了0.1%,但是模型更小更快,参数的数量和FLOPS都大大减少,效率提升了

晓查 发自 凹非寺

量子位 出品 | 公众号 QbitAI

谷歌开源缩放模型EfficientNets:ImageNet准确率创纪录,效率提高10倍

最近,谷歌基于AutoML开发了 EfficientNets ,这是一种新的模型缩放方法。它在ImageNet测试中实现了84.1%的准确率,再次刷新了纪录。

虽然准确率只比之前最好的Gpipe提高了0.1%,但是模型更小更快,参数的数量和FLOPS都大大减少,效率提升了 10倍

开发EfficientNets是来自谷歌大脑的工程师 Mingxing Tan 和首席科学家 Quoc V. Le ,他们的文章《EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks》已经被 ICML 2019 收录, 并在GitHub上开源了模型

谷歌开源缩放模型EfficientNets:ImageNet准确率创纪录,效率提高10倍

实现方法

传统提高CNN准确率的方法有:增加网络的深度或宽度,例如通过增加层数将ResNet-18可扩展到ResNet-200,或者是提高输入图片分辨率来训练和评估网络。

虽然这些方法确实提高了准确率,但是通常需要繁琐的手动调整,而且经常不能获得最优的性能。

最近谷歌提出了一种 复合缩放 (compound scaling)的方法,与缩放神经网络的传统方法不同,谷歌的方法使用一组固定的缩放系数统一缩放每个维度。

实现复合缩放的首先是执行 网格搜索 ,以在固定资源约束下找到基线网络(baseline model)的不同缩放维度之间的关系,确定每个维度的缩放比例系数。然后将这些系数将应用于基线网络,扩展到所需的目标模型大小或计算力。

模型缩放的有效性也在很大程度上依赖于基线网络。因此,为了进一步提高性能,谷歌还使用 AutoML MNAS 框架优化了模型的准确率和效率,执行神经架构搜索来开发新的基线网络。

谷歌开源缩放模型EfficientNets:ImageNet准确率创纪录,效率提高10倍

性能表现

EfficientNet模型实现了比现有CNN更高的精度和更高的效率,将参数数量和FLOPS降低了一个数量级。

特别需要指出的是,EfficientNet-B7在ImageNet上实现了目前最先进的测试结果,准确度为84.4%(top-1)和97.1%(top-5),同时比现有最好的Gpipe小了8.4倍,推理速度快6.1倍。

谷歌开源缩放模型EfficientNets:ImageNet准确率创纪录,效率提高10倍

在同等算力的条件下,EfficientNet也有更好的表现。与ResNet-50相比,EfficientNet-B4的准确率为82.6%,比ResNet-50的76.3%高出6.3个百分点。

谷歌开源缩放模型EfficientNets:ImageNet准确率创纪录,效率提高10倍

EfficientNets不仅在ImageNet上表现良好,迁移到其他数据集上也有优秀的表现。为了评估这一点,谷歌在8个广泛使用的迁移学习数据集上测试了EfficientNets,其中5个实现了最先进的准确度。它在CIFAR-100上准确度为91.7%,在Flowers上为98.8%,同时参数减少了21倍。

谷歌开源缩放模型EfficientNets:ImageNet准确率创纪录,效率提高10倍

传送门

博客地址:

https://ai.googleblog.com/2019/05/efficientnet-improving-accuracy-and.html

开源地址:

https://arxiv.org/abs/1905.11946

小程序|全类别AI学习教程

谷歌开源缩放模型EfficientNets:ImageNet准确率创纪录,效率提高10倍

AI社群|与优秀的人交流

谷歌开源缩放模型EfficientNets:ImageNet准确率创纪录,效率提高10倍

谷歌开源缩放模型EfficientNets:ImageNet准确率创纪录,效率提高10倍

量子位  QbitAI · 头条号签约作者

վ'ᴗ' ի 追踪AI技术和产品新动态

喜欢就点「在看」吧 !


以上所述就是小编给大家介绍的《谷歌开源缩放模型EfficientNets:ImageNet准确率创纪录,效率提高10倍》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

深入理解OpenCV

深入理解OpenCV

[巴西]Daniel Lelis Baggio / 刘波 / 机械工业出版社 / 2014-9 / 59

opencv是最常见的计算机视觉库之一,它提供了许多经过优化的复杂算法。本书对已掌握基本opencv技术同时想提高计算机视觉的实践经验的开发者来讲是一本非常好的书。每章都有一个单独的项目,其背景也在这些章节中进行了介绍。因此,读者可以依次学习这些项目,也可以直接跳到感兴趣的项目进行学习。 《深入理解opencv:实用计算机视觉项目解析》详细讲解9个实用的计算机视觉项目,通过本书的学习,读者可......一起来看看 《深入理解OpenCV》 这本书的介绍吧!

JS 压缩/解压工具
JS 压缩/解压工具

在线压缩/解压 JS 代码

MD5 加密
MD5 加密

MD5 加密工具