内容简介:原作:Parul Pandey铜灵 编译整理量子位 出品 | 公众号 QbitAI
原作:Parul Pandey
铜灵 编译整理
量子位 出品 | 公众号 QbitAI
在图像处理领域,一库在手,相当于天下已有。
最近,有一位搞数据科学的小姐姐Parul Pandey,整理了一份实用 Python 图像处理工具,内含十大经典Python库。
这份资源中的 工具 可用于图像处理中的常见任务,包括裁剪、翻转、旋转、图像分割、分类和特征提取、图像恢复和图像识别等。可谓干货满满,图像处理提升效率必备。
量子位取其重点,将文章翻译整理如下:
1、scikit Image
scikit-image是一个与numpy数组配合使用的开源Python包,在学术研究、教育和行业领域都可应用。
即使是那些刚接触Python生态系统的人,也会觉得这是一个相当简单直接的库。
通过这个包能完成很多任务,比如图像过滤:
使用match_template 函数进行模板匹配:
官方地址:
https://scikit-image.org/
用户指南:
https://scikit-image.org/docs/stable/user_guide.html
2、Numpy
Numpy是Python的核心库之一,也能支持数组,图像本质上是包含数据点像素的标准Numpy数组。
因此,通过基本的NumPy操作,可以修改图像的像素值。
也可以使用skimage加载图像并用matplotlib显示。
使用方法也和简单,比如需要mask一张图像时:
官方地址:
http://www.numpy.org/
3. Scipy
scipy是Python中另一个核心模块,可用于基本的图像操作和处理任务。
特别需要注意的是,子模块scipy.ndimage提供在n维NumPy数组上运行的功能。这个包目前包括线性和非线性滤波器、二元形态、B-spline插值和物体测量等功能。
可以用高斯过滤用Scipy模糊高斯滤波器:
官方资料:
https://docs.scipy.org/doc/scipy/reference/tutorial/ndimage.html#correlation-and-convolution
4、PIL/ Pillow
PIL(Python Imaging Library)是一个免费的Python编程语言库,它增加了对打开,操作和保存不同图像文件格式的支持。然而,它的发展停滞不前,最后一次更新还是在2009年。
其分支Pillow更易于安装,在所有主要操作系统上运行并支持Python 3。这个库包含基本的图像处理功能,包括点操作、使用一组内置卷积核滤波及颜色空间转换。
当用ImageFilter增强Pillow中的图像时,操作是这样的:
官方介绍:
https://pillow.readthedocs.io/en/3.1.x/index.html
5、OpenCV-Python
OpenCV是计算机视觉应用中使用最广泛的库之一,OpenCV-Python是OpenCV的python API。
总体来说,因为后台由用C / C ++编写,因此OpenCV-Python不仅速度快,也易于编程和部署。
这使其成为执行计算密集型视觉程序的绝佳选择。
来看一下用例,下图展示的是OpenCV-Python在Image Blending中使用Pyramids创建一个名为’Orapple’的新水果的功能。
上手指南:
https://github.com/abidrahmank/OpenCV2-Python-Tutorials
6、SimpleCV
SimpleCV也是广泛被使用的构建计算机视觉应用程序的开源框架。
手握SimpleCV,你可以访问几个高性能的视觉库,而无需先了解图像色深(bit depth)、文件格式、色彩空间等。
SimpleCV拥护者的支持理由有两个,一是初学者也可以借此编写简单的视觉任务,二是无论是相机、视频文件、图像和视频流可互相操作。
用户指南:
https://simplecv.readthedocs.io/en/latest/
7、Mahotas
Mahotas包含传统的图像处理功能,如滤波和图像形态学处理,以及用于特征计算,比如兴趣点检测和局部描述子等。
这个库适用于快速开发,算法是用C++实现的,并且针对速度进行了调整。
官方地址:
https://mahotas.readthedocs.io/en/latest/
用户指南:
https://mahotas.readthedocs.io/en/latest/index.html
8、 SimpleITK
ITK是一个开源的跨平台系统,提供一整套用于图像分析的软件工具。
其中,SimpleITK是一个建立在ITK之上的简化层,促进其在简化原型、教育和解释语言中的应用。
SimpleITK是一个图像分析工具包,内含大量组件,支持一般滤波操作、图像分割和图形配准。
SimpleITK本身是用C++编写的,但也适用于包括Python在内的大量编程语言。
下面就是用SimpleITK和Python创建的可视化的CT/MR图:
官方地址:
https://itk.org/
学习资料:
http://insightsoftwareconsortium.github.io/SimpleITK-Notebooks/
9、GraphicsMagick
GraphicsMagick号称图像处理领域的瑞士军刀。 代码短小却提供了一个鲁棒、高效的工具和库集合,可用来处理图像的读取、写入和操作。
支持超过88种图像格式,包括重要的DPX、GIF、JPEG、JPEG-2000、PNG、PDF、PNM和TIFF。
将它用于图像边缘提取任务,效果如下:
官方资料:
https://pypi.org/project/pgmagick/
相关资源:
https://github.com/hhatto/pgmagick
10、Pycairo
pyCairo是一个Python的2D图形渲染库,可用于绘制矢量图形的2D图形,在调整大小或变换时不会丢失清晰度。
下面这个用例是用Pycairo绘制线条、基本形状和径向梯度。
官方介绍:
https://cairographics.org/
相关资源:
https://github.com/pygobject/pycairo
传送门
博客原文地址(需要科学前往):
https://towardsdatascience.com/image-manipulation-tools-for-python-6eb0908ed61f
文章下载地址:
https://pan.baidu.com/s/1FDlji1zJIVeoSPQ89WVfMw
— 完 —
小程序|全类别AI学习教程
AI社群|与优秀的人交流
量子位 QbitAI · 头条号签约作者
վ'ᴗ' ի 追踪AI技术和产品新动态
喜欢就点「在看」吧 !
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网
猜你喜欢:- Spring 缓存大法
- phpmyadmin getshell大法
- Echarts 系列之复制粘贴大法
- 安卓APP测试之HOOK大法
- iOS 模拟器调试大法了解一下?
- 图片和视频编辑之Matrix大法好
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
算法竞赛入门经典
刘汝佳、陈锋 / 2012-10 / 52.80元
《算法竞赛入门经典:训练指南》是《算法竞赛入门经典》的重要补充,旨在补充原书中没有涉及或者讲解得不够详细的内容,从而构建一个较完整的知识体系,并且用大量有针对性的题目,让抽象复杂的算法和数学具体化、实用化。《算法竞赛入门经典:训练指南》共6章,分别为算法设计基础、数学基础、实用数据结构、几何问题、图论算法与模型和更多算法专题,全书通过近200道例题深入浅出地介绍了上述领域的各个知识点、经典思维方式......一起来看看 《算法竞赛入门经典》 这本书的介绍吧!