MNIST数据集重生!测试图片增加到6万张,LeCun点赞

栏目: Python · 发布时间: 5年前

内容简介:MNIST数据集是图像分类领域的基准测试之一,用于0~9手写数字图像分类任务,包含6万张训练图像和1万张测试图像。它已经有20多年的历史了。但是官方测试集因为测试集样本太少,MNIST通常被认为不能提供有意义的置信区间。

晓查 发自 凹非寺

量子位 出品 | 公众号 QbitAI

MNIST数据集重生!测试图片增加到6万张,LeCun点赞

MNIST数据集是图像分类领域的基准测试之一,用于0~9手写数字图像分类任务,包含6万张训练图像和1万张测试图像。它已经有20多年的历史了。

但是官方测试集因为测试集样本太少,MNIST通常被认为不能提供有意义的置信区间。

现在,来自纽约大学两位研究人员给MNIST测试集再增加5万张图片,叫做 QMNIST ,获得校友、也是MNIST发起者LeCun转发。

LeCun给予了这个数据集很高的评价,认为它“重生、恢复、扩展”了MNIST。

MNIST数据集重生!测试图片增加到6万张,LeCun点赞

数据集内容

QMNIST扩展数据集包含以下一些文件。

MNIST数据集重生!测试图片增加到6万张,LeCun点赞

其中,前两个gz压缩文件和标准MNIST数据文件格式相同,不同的是QMNIST包含6万个测试样本。

前10000个QMNIST测试样本与MNIST测试集是逐一匹配的,后50000个示例是根据MNIST用算法重建的数据集。

使用方法

QMNIST的GitHub页上提供了Pytorch平台的QMNIST数据加载器,需要将数据集下载至与pytorch.py相同的文件夹下将网络下载选项设置为download=’True’。

它与标准的Pytorch MNIST数据加载器兼容。

from qmnist import QMNIST

# the qmnist training set, download from the web if not found
qtrain = QMNIST('_qmnist', train=True, download=True)

# the qmnist testing set, do not download.
qtest = QMNIST('_qmnist', train=False)

# the first 10k of the qmnist testing set with extended labels
# (targets are a torch vector of 8 integers)
qtest10k = QMNIST('_qmnist', what='test10k', compat=False, download='True')

# all the NIST digits with extended labels
qall = QMNIST('_qmnist', what='nist', compat=False)

传送门

数据集地址:

https://github.com/facebookresearch/qmnist

论文地址:

https://arxiv.org/abs/1905.10498

小程序|全类别AI学习教程

MNIST数据集重生!测试图片增加到6万张,LeCun点赞

AI社群|与优秀的人交流

MNIST数据集重生!测试图片增加到6万张,LeCun点赞

MNIST数据集重生!测试图片增加到6万张,LeCun点赞

量子位  QbitAI · 头条号签约作者

վ'ᴗ' ի 追踪AI技术和产品新动态

喜欢就点「在看」吧 !


以上所述就是小编给大家介绍的《MNIST数据集重生!测试图片增加到6万张,LeCun点赞》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

如何求解问题

如何求解问题

Zbigniew Michalewicz、David B.Fogel / 曹宏庆 / 中国水利水电出版社 / 2003-2-1 / 35.00元

《如何求解问题:现代启发式方法》通过一系列贯穿于章节间的有趣难题,《如何求解问题:现代启发式方法》深入浅出地阐述了如何利用计算机来求解问题的一些现代启发式方法。全书包括两部分,共分15章。一起来看看 《如何求解问题》 这本书的介绍吧!

HTML 编码/解码
HTML 编码/解码

HTML 编码/解码

MD5 加密
MD5 加密

MD5 加密工具

SHA 加密
SHA 加密

SHA 加密工具