内容简介:MNIST数据集是图像分类领域的基准测试之一,用于0~9手写数字图像分类任务,包含6万张训练图像和1万张测试图像。它已经有20多年的历史了。但是官方测试集因为测试集样本太少,MNIST通常被认为不能提供有意义的置信区间。
晓查 发自 凹非寺
量子位 出品 | 公众号 QbitAI
MNIST数据集是图像分类领域的基准测试之一,用于0~9手写数字图像分类任务,包含6万张训练图像和1万张测试图像。它已经有20多年的历史了。
但是官方测试集因为测试集样本太少,MNIST通常被认为不能提供有意义的置信区间。
现在,来自纽约大学两位研究人员给MNIST测试集再增加5万张图片,叫做 QMNIST ,获得校友、也是MNIST发起者LeCun转发。
LeCun给予了这个数据集很高的评价,认为它“重生、恢复、扩展”了MNIST。
数据集内容
QMNIST扩展数据集包含以下一些文件。
其中,前两个gz压缩文件和标准MNIST数据文件格式相同,不同的是QMNIST包含6万个测试样本。
前10000个QMNIST测试样本与MNIST测试集是逐一匹配的,后50000个示例是根据MNIST用算法重建的数据集。
使用方法
QMNIST的GitHub页上提供了Pytorch平台的QMNIST数据加载器,需要将数据集下载至与pytorch.py相同的文件夹下将网络下载选项设置为download=’True’。
它与标准的Pytorch MNIST数据加载器兼容。
from qmnist import QMNIST
# the qmnist training set, download from the web if not found
qtrain = QMNIST('_qmnist', train=True, download=True)
# the qmnist testing set, do not download.
qtest = QMNIST('_qmnist', train=False)
# the first 10k of the qmnist testing set with extended labels
# (targets are a torch vector of 8 integers)
qtest10k = QMNIST('_qmnist', what='test10k', compat=False, download='True')
# all the NIST digits with extended labels
qall = QMNIST('_qmnist', what='nist', compat=False)
传送门
数据集地址:
https://github.com/facebookresearch/qmnist
论文地址:
https://arxiv.org/abs/1905.10498
— 完 —
小程序|全类别AI学习教程
AI社群|与优秀的人交流
量子位 QbitAI · 头条号签约作者
վ'ᴗ' ի 追踪AI技术和产品新动态
喜欢就点「在看」吧 !
以上所述就是小编给大家介绍的《MNIST数据集重生!测试图片增加到6万张,LeCun点赞》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!
猜你喜欢:- 我的静谧成长岁月: 劫后重生
- 木兰重生:交互环境复现,新添新手入门
- 涅槃重生:KRPC 实现 Impala 的飞跃
- 涅槃重生:KRPC 实现 Impala 的飞跃
- 木兰重生:150 行木兰代码为木兰自身实现高亮效果
- 木兰重生:在 PyPI 发布 ulang 0.0.14.1
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
一个APP的诞生
Carol 炒炒、刘焯琛 / 电子工业出版社 / 2016-7-1 / 79
在移动互联网高度发达的今天,一个个APP,成为我们通向网络世界的窗口。它的诞生流程,令不少对互联网世界产生幻想甚至试图投身其中的年轻人充满了好奇。 《一个APP 的诞生》就是这样一步一步拆分一个APP 的诞生过程。从前期市场调研,竞品分析开始,一直到设计规范,界面图标,设计基础,流程管理,开发实现,市场推广,服务设计,甚至跨界融合,都有陈述。 《一个APP 的诞生》被定义是一本教科书,......一起来看看 《一个APP的诞生》 这本书的介绍吧!