内容简介:本文首发于微信公众号:"算法与编程之美",欢迎关注,及时了解更多此系列文章。keras的fashion-mnist数据集的源码为:
欢迎点击「算法与编程之美」↑关注我们!
本文首发于微信公众号:"算法与编程之美",欢迎关注,及时了解更多此系列文章。
keras的fashion-mnist数据集的源码为:
def load_data():
"""Loads the Fashion-MNIST dataset.
# Returns
Tuple of Numpy arrays: `(x_train, y_train), (x_test, y_test)`.
"""
dirname = os.path.join('datasets', 'fashion-mnist')
base = 'http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/'
files = ['train-labels-idx1-ubyte.gz', 'train-images-idx3-ubyte.gz',
't10k-labels-idx1-ubyte.gz', 't10k-images-idx3-ubyte.gz']
paths = []
for fname in files:
paths.append(get_file(fname,
origin=base + fname,
cache_subdir=dirname))
with gzip.open(paths[0], 'rb') as lbpath:
y_train = np.frombuffer(lbpath.read(), np.uint8, offset=8)
with gzip.open(paths[1], 'rb') as imgpath:
x_train = np.frombuffer(imgpath.read(), np.uint8,
offset=16).reshape(len(y_train), 28, 28)
with gzip.open(paths[2], 'rb') as lbpath:
y_test = np.frombuffer(lbpath.read(), np.uint8, offset=8)
with gzip.open(paths[3], 'rb') as imgpath:
x_test = np.frombuffer(imgpath.read(), np.uint8,
offset=16).reshape(len(y_test), 28, 28)
return (x_train, y_train), (x_test, y_test)
fashion-mnist数据集以四个gzip格式的方式存储在远程服务器上,利用keras的get_file()下载到本地的keras缓存目录。
然后利用gzip的open()打开文件,利用numpy的frombuffer方法直接加载numpy的数组。如果是图像数据的话,需要进行reshape操作。
此处,为什么加载图片数据的时候需要offset=16,标签数据的时候需要offset=8?
fashion-mnist图像数据集的预处理方式和mnist有很大的不同,四个gz文件分别存放了x_train, y_train, x_test, y_test四个部分,然后分别读取四个文件利用np.frombuffer()方式加载。这种处理方式相对mnist来说复杂一些。 为什么会这样处理?
欢迎持续关注。
温馨提示: 点击页面右下角 “写留言”发表评论,期待您的参与!期待您的转发!
以上所述就是小编给大家介绍的《深度学习实战 fashion-mnist数据集预处理技术分析》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!
猜你喜欢:- 深度学习实战 图像数据集预处理总结
- 深度学习实战 mnist数据集预处理技术分析
- 深度学习实战 cifar数据集预处理技术分析
- Python环境安装及数据基本预处理-大数据ML样本集案例实战
- Pandas多维特征数据预处理及sklearn数据不均衡处理相关技术实践-大数据ML样本集案例实战
- 时间序列数据的预处理及基于ARIMA模型进行趋势预测-大数据ML样本集案例实战
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
《生活大爆炸》之科学揭秘
乔治·毕姆 / 韩准、徐漪、江业华、叶夜 / 世界图书出版公司 / 2012-12 / 49.00元
《 之科学揭秘:GEEK探索频道》对流行美剧《生活大爆炸》进行“深度解密”,重点在解读剧中涉及的流行文化及科学元素。正如我们所知,《生活大爆炸》是一部“技术含量很高”的肥皂剧。不光是普通观众,科学家也爱《生活大爆炸》。《 之科学揭秘:GEEK探索频道》中,科学家详尽为你解释了电视剧中出现的科学道理和典故。包括谢尔顿的高深弦理论、霍华德的花生过敏是怎么回事、如果你和谢尔顿的妈妈有同样的信仰该如何看待......一起来看看 《《生活大爆炸》之科学揭秘》 这本书的介绍吧!