Netty 源码解析系列-客户端连接接入及读I/O解析

栏目: Java · 发布时间: 5年前

内容简介:根据k.attachment()获取附加的对象,那我们是在哪里附加上去的呢?上一篇

上一章节《Netty 源码解析系列-服务端启动流程解析》 我们完成了服务端启动,那么服务端启动完成后,客户端接入以及读 I/O 事件是怎么哪里开始的?以及 nettyboss 线程接收到客户端 TCP 连接请求后如何将链路注册到 worker 线程池?带着这些疑问,我们开始客户端连接接入及读写 I/O 解析。

1.NioEventLoop run()开始

processSelectedKeys();
复制代码
private void processSelectedKeys() {
    if (selectedKeys != null) {
        processSelectedKeysOptimized(selectedKeys.flip());
    } else {
        processSelectedKeysPlain(selector.selectedKeys());
    }
}
复制代码

根据 selectedKeys 是否为空,判断是否采用优化后的 selectedKeys ,进到 processSelectedKeysOptimized

private void processSelectedKeysOptimized(SelectionKey[] selectedKeys) {
    for (int i = 0;; i ++) {
        final SelectionKey k = selectedKeys[i];
        if (k == null) {
            break;
        }
        selectedKeys[i] = null;

        final Object a = k.attachment();

        if (a instanceof AbstractNioChannel) {
               processSelectedKey(k, (AbstractNioChannel) a);
        } else {
               @SuppressWarnings("unchecked")
               NioTask<SelectableChannel> task = (NioTask<SelectableChannel>) a;
               processSelectedKey(k, task);
        }
            ...
}
}
复制代码

k.attachment()获取附加的对象,那我们是在哪里附加上去的呢?上一篇 《Netty 源码解析-服务端启动流程解析》 注册时 attach 上去的对象,其实就是 NioServerSocketChannel 自身。

@Override
protected void doRegister() throws Exception {
    boolean selected = false;
    for (;;) {
	...
	selectionKey = javaChannel().register(eventLoop().selector, 0, this);
	...        
    }
}
复制代码

我们再回到 k.attachment() ,在取出附加对象后,判断类型是否为 AbstractNioChannel ,从这里我们可以看到,不是附加 AbstractNioChannel 类型,那么就是附加的 NioTask 对象,在这里我们只看关于 AbstractNioChannel 的,进到 processSelectedKey() 方法。

private static void processSelectedKey(SelectionKey k, AbstractNioChannel ch) {
    final NioUnsafe unsafe = ch.unsafe();
    ...
    int readyOps = k.readyOps();
    if ((readyOps & (SelectionKey.OP_READ | SelectionKey.OP_ACCEPT)) != 0 || readyOps == 0) {
         unsafe.read();
    if (!ch.isOpen()) {
         return;
    }
    if ((readyOps & SelectionKey.OP_WRITE) != 0) {
          ch.unsafe().forceFlush();
    }
    if ((readyOps & SelectionKey.OP_CONNECT) != 0) {
          int ops = k.interestOps();
          ops &= ~SelectionKey.OP_CONNECT;
          k.interestOps(ops);
          unsafe.finishConnect();
    }
    ...
}
复制代码

当操作类型是读操作或者连接操作,进入 unsafe.read() ,有两个类实现了这个方法,一个是 AbstractNioByteChannel 的内部类 NioByteUnsafe ,一个是 AbstractNioMessageChannel 的内部类 NioMessageUnsafe ,这两个类都是 NioUnsafe 实现类 AbstractNioChannel 的子类,那到底是哪一个子类?我们看看 NioServerSocketChannel 创建时是创建的 NioByteUnsafe 还是 NioMessageUnsafe

public class NioServerSocketChannel extends AbstractNioMessageChannel
                             implements io.netty.channel.socket.ServerSocketChannel {
        public NioServerSocketChannel() {
                this(newSocket(DEFAULT_SELECTOR_PROVIDER));
        }
}
复制代码
public NioServerSocketChannel(ServerSocketChannel channel) {
        super(null, channel, SelectionKey.OP_ACCEPT);
        config = new NioServerSocketChannelConfig(this, javaChannel().socket());
}
复制代码
public abstract class AbstractNioMessageChannel extends AbstractNioChannel {
    protected AbstractNioMessageChannel(Channel parent, SelectableChannel ch, int readInterestOp) {
          super(parent, ch, readInterestOp);
      }
}
复制代码
public abstract class AbstractNioChannel extends AbstractChannel {
	protected AbstractNioChannel(Channel parent, SelectableChannel ch, int readInterestOp) {
    		super(parent);
	}
}

复制代码
public abstract class AbstractChannel extends DefaultAttributeMap implements Channel {
        protected AbstractChannel(Channel parent) {
                this.parent = parent;
                unsafe = newUnsafe();
                pipeline = new DefaultChannelPipeline(this);
        }
}
复制代码

NioServerSocketChannel是 AbstractNioMessageChannel 的子类, AbstractNioMessageChannelAbstractNioChannel 的子类, newUnsafe()AbstractChannel 的抽象方法,那么我们从这里就知道, AbstractNioMessageChannel 实现了 AbstractChannel的newUnsafe() 抽象方法,由此判断,我们选择 AbstractNioMessageChannel 的内部类 NioMessageUnsaferead()

private final class NioMessageUnsafe extends AbstractNioUnsafe {
    private final List<Object> readBuf = new ArrayList<Object>();
    @Override
    public void read() {
        ...
        for (;;) {
           int localRead = doReadMessages(readBuf);
           ...
    }
    setReadPending(false);
    int size = readBuf.size();
    for (int i = 0; i < size; i ++) {
            pipeline.fireChannelRead(readBuf.get(i));
    }
    readBuf.clear();
    pipeline.fireChannelReadComplete();
    ...
}
复制代码

这里分两部分,一个是处理消息,一个是处理事件。

1.处理消息

@Override
protected int doReadMessages(List<Object> buf) throws Exception {
    SocketChannel ch = javaChannel().accept();
    ...
    buf.add(new NioSocketChannel(this, ch));
    return 1;
    ...
}
复制代码

接受了一个客户端 SocketChannel ,封装到 NioSocketChannel ,添加到 list 集合中,我们看看 new NioSocketChannel()

public class NioSocketChannel extends AbstractNioByteChannel implements io.netty.channel.socket.SocketChannel {
	public NioSocketChannel(Channel parent, SocketChannel socket) {
    		super(parent, socket);
    		config = new NioSocketChannelConfig(this, socket.socket());
	}
}
复制代码
public abstract class AbstractNioByteChannel extends AbstractNioChannel {
	protected AbstractNioByteChannel(Channel parent, SelectableChannel ch) {
    		super(parent, ch, SelectionKey.OP_READ);
	}

    @Override
    protected AbstractNioUnsafe newUnsafe() {
    	return new NioByteUnsafe();
    }

    protected class NioByteUnsafe extends AbstractNioUnsafe {
	    @Override
	    public final void read() {
		    ...
	    }
    }
}
复制代码

AbstractNioByteChannel也继承了 AbstractNioChannel ,并实现了 newUnsafe() 方法,由此我们可以推断出当客户端第一次连接时,走的是 AbstractNioMessageChannel 的子类 NioMessageUnsafe的read() ,当客户端发送数据时,走的是 AbstractNioByteChannel 的内部类 AbstractNioUnsaferead() 方法。

2.处理事件

for (int i = 0; i < size; i ++) {
    	   pipeline.fireChannelRead(readBuf.get(i));
     }

复制代码
@Override
public ChannelPipeline fireChannelRead(Object msg) {
    head.fireChannelRead(msg);
    return this;
}
复制代码
@Override
public ChannelHandlerContext fireChannelRead(final Object msg) {
    final AbstractChannelHandlerContext next = findContextInbound();
    EventExecutor executor = next.executor();
    if (executor.inEventLoop()) {
        next.invokeChannelRead(msg);
    } else {
        executor.execute(new OneTimeTask() {
            @Override
            public void run() {
                next.invokeChannelRead(msg);
            }
        });
    }
    return this;
}
复制代码

Netty 源码解析系列-客户端连接接入及读I/O解析
nextdebug 可以看出,当前 handlerServerBootstrapAcceptor 这个处理器来处理 ChannelRead() 方法,如果看了 上一篇《Netty 源码解析-服务端启动流程解析》 就会知道,这是在 init() 方法中 pipeline.addLast(new ServerBootstrapAcceptor()) 。为什么不是 p.addLast(new ChannelInitializer())? 因为在 ChannelInitializer.channelRegistered() 会删除当前 initChannel

处理器。

public final void channelRegistered(ChannelHandlerContext ctx) throws Exception {
    initChannel((C) ctx.channel());
    ctx.pipeline().remove(this);
    ctx.fireChannelRegistered();
}
复制代码

我们继续看 ServerBootstrapAcceptorChannelRead() 方法。

@Override
@SuppressWarnings("unchecked")
public void channelRead(ChannelHandlerContext ctx, Object msg) {
    final Channel child = (Channel) msg;
    child.pipeline().addLast(childHandler);
    for (Entry<ChannelOption<?>, Object> e: childOptions) {
       try {
          if (!child.config().setOption((ChannelOption<Object>) e.getKey(), e.getValue())) {
              logger.warn("Unknown channel option: " + e);
          }
        } catch (Throwable t) {
              logger.warn("Failed to set a channel option: " + child, t);
        }
    }
    for (Entry<AttributeKey<?>, Object> e: childAttrs) {
         child.attr((AttributeKey<Object>) e.getKey()).set(e.getValue());
    }
    try {
        childGroup.register(child).addListener(new ChannelFutureListener() {
           @Override
           public void operationComplete(ChannelFuture future) throws Exception {
               if (!future.isSuccess()) {
                   forceClose(child, future.cause());
                }
            }
        });
     } catch (Throwable t) {
           forceClose(child, t);
     }
}
复制代码

这里分三个步骤

(1)将 childHandler 添加到处理器上,这个从哪里来?就是从最开始设置 serverBootstrap.childHandler(new IOChannelInitialize())

(2)设置一些参数。

(3) work线程池 register 客户端的 channel

@Override
public ChannelFuture register(Channel channel) {
    return next().register(channel);
}

复制代码
@Override
public EventLoop next() {
    return (EventLoop) super.next();
}
复制代码
@Override
public EventExecutor next() {
    return chooser.next();
}
复制代码
private final class GenericEventExecutorChooser implements EventExecutorChooser {
    @Override
    public EventExecutor next() {
        return children[Math.abs(childIndex.getAndIncrement() % children.length)];
    }
}
复制代码

work 线程池选一个线程来执行 register

@Override
public ChannelFuture register(Channel channel) {
    return register(channel, new DefaultChannelPromise(channel, this));
}
复制代码
@Override
public ChannelFuture register(final Channel channel, final ChannelPromise promise) {
	 ...
        channel.unsafe().register(this, promise);
        return promise;
}
复制代码
@Override
public final void register(EventLoop eventLoop, final ChannelPromise promise) {
	 ...
     AbstractChannel.this.eventLoop = eventLoop;
     if (eventLoop.inEventLoop()) {
     register0(promise);
     } else {
          try {
              eventLoop.execute(new OneTimeTask() {
              @Override
              public void run() {
                 register0(promise);
              }
              });
           } catch (Throwable t) {
	            ...
           }
     }
}
复制代码
@Override
protected void doRegister() throws Exception {
	...
	selectionKey = javaChannel().register(eventLoop().selector, 0, this);
	...
}
复制代码

后面的流程和 上一篇《Netty 源码解析-服务端启动流程解析》 的注册流程是一样的,区别在于服务启动时注册是在 boss 线程池任务队列中执行注册,客户端新接入注册是在 work 线程池任务队列中执行 register0() 方法,并将 work 线程池的 selector 注册到 Java NIO 到这里,我们就可以回答开篇的的几个问题:客户端是如何接入? nettyboss 线程接收到客户端 TCP 连接请求后如何将链路注册到 worker 线程池? 现在我们还剩下一个问题:读写 I/O 事件是怎么哪里开始的?

我们回到文章开头

private void processSelectedKeysOptimized(SelectionKey[] selectedKeys) {
    for (int i = 0;; i ++) {
        final SelectionKey k = selectedKeys[i];
        if (k == null) {
            break;
        }
        selectedKeys[i] = null;

        final Object a = k.attachment();

        if (a instanceof AbstractNioChannel) {
               processSelectedKey(k, (AbstractNioChannel) a);
        } else {
               @SuppressWarnings("unchecked")
               NioTask<SelectableChannel> task = (NioTask<SelectableChannel>) a;
               processSelectedKey(k, task);
        }
             ...
    } 
}
复制代码

前面 boss 线程池在这里完成了客户端连接接入,并将链路注册到 worker 线程池任务队列,添加了 read 事件的监听,那么现在 work 线程不停循环 selectedKeys 中有没有待处理的事件,当有待处理事件,那么会执行 processSelectedKey() 方法。

private static void processSelectedKey(SelectionKey k, AbstractNioChannel ch) {
	...
	int readyOps = k.readyOps();
	if ((readyOps & (SelectionKey.OP_READ | SelectionKey.OP_ACCEPT)) != 0 || readyOps == 0) {
    		unsafe.read();
    		...
	}
	...
}
复制代码

在这里 unsafe.read() 选择 AbstractNioByteChannelread()

@Override
public final void read() {
    final ChannelConfig config = config();
    if (!config.isAutoRead() && !isReadPending()) {
        // ChannelConfig.setAutoRead(false) was called in the meantime
        removeReadOp();
        return;
    }
    final ChannelPipeline pipeline = pipeline();
    final ByteBufAllocator allocator = config.getAllocator();
    final int maxMessagesPerRead = config.getMaxMessagesPerRead();
    RecvByteBufAllocator.Handle allocHandle = this.allocHandle;
    if (allocHandle == null) {
       this.allocHandle = allocHandle = config.getRecvByteBufAllocator().newHandle();
    }
    ByteBuf byteBuf = null;
    int messages = 0;
    boolean close = false;
    try {
       int totalReadAmount = 0;
       boolean readPendingReset = false;
       do {
          byteBuf = allocHandle.allocate(allocator);
          int writable = byteBuf.writableBytes();
          int localReadAmount = doReadBytes(byteBuf);
          if (localReadAmount <= 0) {
           // not was read release the buffer
              byteBuf.release();
              byteBuf = null;
              close = localReadAmount < 0;
              break;
           }
          if (!readPendingReset) {
               readPendingReset = true;
               setReadPending(false);
          }
          pipeline.fireChannelRead(byteBuf);
          byteBuf = null;

          if (totalReadAmount >= Integer.MAX_VALUE - localReadAmount) {
               totalReadAmount = Integer.MAX_VALUE;
               break;
          }
          totalReadAmount += localReadAmount;

          if (!config.isAutoRead()) {
               break;
          }

          if (localReadAmount < writable) {
              break;
          }
       } while (++ messages < maxMessagesPerRead);
         pipeline.fireChannelReadComplete();
         allocHandle.record(totalReadAmount);

        if (close) {
            closeOnRead(pipeline);
            close = false;
        }
     } catch (Throwable t) {
          handleReadException(pipeline, byteBuf, t, close);
     } finally {
         if (!config.isAutoRead() && !isReadPending()) {
                removeReadOp();
          }
     }
    }
}
复制代码

把这一大段代码分解成几部分

1.设置循环读,16次,未读完则会等到下一轮 select 继续读取, maxMessagesPerRead 默认等于16。

2.获取缓存操作 handlerconfig.getRecvByteBufAllocator().newHandle()

3.申请缓存空间, allocHandle.allocate(allocator)

4.从 socket 中读取数据到 byteBuf 中。

5.传递读事件到下一个 handler 处理器。

6.读完之后发送读完时间到下一个 handler 处理器 我们只看读事件,其他细节后面的文章再详细解析。

@Override
public ChannelPipeline fireChannelRead(Object msg) {
    head.fireChannelRead(msg);
    return this;
}
复制代码
@Override
public ChannelHandlerContext fireChannelRead(final Object msg) {
    if (msg == null) {
        throw new NullPointerException("msg");
    }

    final AbstractChannelHandlerContext next = findContextInbound();
    EventExecutor executor = next.executor();
    if (executor.inEventLoop()) {
        next.invokeChannelRead(msg);
 } else {
        executor.execute(new OneTimeTask() {
            @Override
            public void run() {
                next.invokeChannelRead(msg);
            }
        });
    }
    return this;
}
复制代码
Netty 源码解析系列-客户端连接接入及读I/O解析
Handler 事件顺序是 HeadContextHandler --> IdleStateHandler -->IOHandler --> TailContext
private void invokeChannelRead(Object msg) {
    try {
        ((ChannelInboundHandler) handler()).channelRead(this, msg);
    } catch (Throwable t) {
        notifyHandlerException(t);
    }
}
复制代码

进到 IdleStateHandler

@Override
public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception {
    if (readerIdleTimeNanos > 0 || allIdleTimeNanos > 0) {
        reading = true;
        firstReaderIdleEvent = firstAllIdleEvent = true;
    }
    ctx.fireChannelRead(msg);
}
复制代码

设置读事件为true,为后面状态检测做准备,继续向下传递读事件,这次是 IOHandler 的读事件。

Netty 源码解析系列-客户端连接接入及读I/O解析
public class IOHandler extends ChannelInboundHandlerAdapter {
    @Override
    public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception {
        super.channelRead(ctx, msg);
        System.out.println(msg.toString());
    }
	...
}
复制代码

交给用户自定义 handler 处理读事件,自此读 I/O 事件是怎么哪里开始,如何交给用户 handler 处理已解析完毕。

总结:

1.boss线程处理 NioServerSocketChannelaccept 事件,并将客户端添加到 work 任务队列,任务队列执行 redister0() 方法, 将 read 事件注册到 work 线程的 selector

2.work线程轮询 selectkeys ,当有事件上来时,将缓存数据发送到用户 handler


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

维多利亚时代的互联网

维多利亚时代的互联网

[英] 汤姆·斯丹迪奇 / 多绥婷 / 后浪丨江西人民出版社 / 2017-8 / 38.00元

人类历史上的第一次大连接 回顾互联网的前世 预言互联网的未来 ……………… ※编辑推荐※ ☆《财富》杂志推荐的75本商务人士必读书之一 ☆ 回顾互联网的前世,颠覆你的思维,升级你对互联网的认知 ☆ 人类历史上一次全球大连接是维多利亚时期的电报时代,那时候也有疯狂的资本、 巨大的泡沫、网络新型犯罪、网络亚文化崛起……现在的互联网时代就是电报时代的重演;回顾那......一起来看看 《维多利亚时代的互联网》 这本书的介绍吧!

UNIX 时间戳转换
UNIX 时间戳转换

UNIX 时间戳转换

RGB CMYK 转换工具
RGB CMYK 转换工具

RGB CMYK 互转工具

HEX CMYK 转换工具
HEX CMYK 转换工具

HEX CMYK 互转工具