[译] 机器学习中常用的几个概率不等式及证明

栏目: 数据库 · 发布时间: 6年前

内容简介:第一时间获取好内容

点击上方“ 大数据与人工智能 ”,“星标或置顶公众号”

第一时间获取好内容

[译] 机器学习中常用的几个概率不等式及证明

作者丨stephenDC

这是作者的第 9 篇文章

马尔科夫不等式、霍夫丁不等式和詹森不等式,是机器学习中经常遇到的几个概率不等式。本文对它们进行简单介绍,并加以证明,然后对它们在机器学中的应用进行举例说明。

主要内容包括:

马尔科夫不等式(Markov’s Inequality)

 定义     

[译] 机器学习中常用的几个概率不等式及证明        

证明 

[译] 机器学习中常用的几个概率不等式及证明

应用 

a.用于估计一个概率的上界,比如假设你所在公司的人均工资是1万,那么随机选一个你司员工,其工资超过10万的概率,不会超过1/10。

b.用于其他概率不等式的证明,比如下面的霍夫丁不等式。

霍夫丁不等式(Hoeffding’s Inequality)

霍夫丁不等式的证明,除了要用到上面的马尔科夫不等式外,还要用到霍夫丁引理。因此,下面先介绍霍夫丁引理。

霍夫丁引理 

定义 

[译] 机器学习中常用的几个概率不等式及证明

证明 

[译] 机器学习中常用的几个概率不等式及证明

[译] 机器学习中常用的几个概率不等式及证明

[译] 机器学习中常用的几个概率不等式及证明

霍夫丁不等式 

定义 

[译] 机器学习中常用的几个概率不等式及证明

证明 

[译] 机器学习中常用的几个概率不等式及证明

应用 

用于给出二分类问题的泛化误差上界

[译] 机器学习中常用的几个概率不等式及证明

詹森不等式(Jensen’s Inequality)

定义 

[译] 机器学习中常用的几个概率不等式及证明

证明 

凸函数定义 + 归纳法

应用 

[译] 机器学习中常用的几个概率不等式及证明

[译] 机器学习中常用的几个概率不等式及证明

[译] 机器学习中常用的几个概率不等式及证明

1. 有些公式里很多变量没给出来具体意义啊?

如果你已学过相关内容,这里可以帮助你回顾一下;如果你还没学习相关内容,不必了解其中变量的具体含义,这里重在形式推导。

2. 咦,那么巧?概率统计中log和exp的函数形式如此常见(比如,对数似然函数、指数分布族),而-log(x)和exp(x)刚好都是凸函数,可以各种使用詹森不等式。

NO,是因为-log(x)是凸函数,我们才对似然函数求对数,因为exp(x)是凸函数,我们才更喜欢用指数分布族建模的。所以,那么多的偶遇其实都是注定,因为那个他(她)早在那里等你多时了!

参考文献:

李航 《统计学习方法》 第二版

-END-

[译] 机器学习中常用的几个概率不等式及证明


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

IT大败局

IT大败局

Merrill R.Chapman、周良忠 / 周良忠 / 电子工业出版社 / 2004-8-1 / 35.00

这是一本由作者亲身经历写就的MBA式教案。通过作者那专业人士的敏锐、活泼流畅的文笔和美国人特有的幽默,本书为我们剖析了IT界十个有代表性且影响深远的愚蠢败局。这十个败局涉及企业经营的十个主要方面,它们是:产业标准的魔力,“缩水”产品的阴霾,产品定位的泥潭,市场关系的教训,巨型企业的困惑,企业并购的陷阱,品牌战略的迷茫,技术导向的失衡,企业公关的真谛和科技虚幻的诱惑。 书中有许多鲜为人......一起来看看 《IT大败局》 这本书的介绍吧!

RGB转16进制工具
RGB转16进制工具

RGB HEX 互转工具

html转js在线工具
html转js在线工具

html转js在线工具

HEX CMYK 转换工具
HEX CMYK 转换工具

HEX CMYK 互转工具