内容简介:这是涛哥给你推荐的第40篇好文来源 :Python与算法之美
这是涛哥给你推荐的第40篇好文
来源 :Python与算法之美
小红:你先跟我说说什么是pyecharts吧。
小明:Echarts 是一个由百度开源的数据可视化javascript库,凭借着良好的交互性,精巧的图表设计,得到了众多开发者的认可。而 Python 是一门富有表达力的语言,很适合用于数据处理。当数据分析遇上数据可视化时,pyecharts诞生了。简单地说,pyecharts就是百度开源的一个强大的javascript数据可视化库Echarts的python接口。
小红:明白,那这个pyecharts要怎么安装呢?
小明:很简单,用pip就可以安装了。下面是在jupyter notebook中安装这个库的一个示范。
# 安装pyecharts !pip install pyecharts==0.5.11 # pyecharts_snapshot 提供图片导出功能 !pip install pyecharts_snapshot
一,基本图表
小红:好了,我已经安装成功了。你可不可以给我举一些常用图表的范例。
小明:OK,在数据分析中最常用的3种图表就是柱形图,折线图和散点图了。下面我们就来看一下pyecharts绘制这3种常用图表的范例吧。
1,柱形图
柱形图适合表现几组数据之间的对比关系,柱形图表现的数据的数量一般不宜太多,多了的话会像一堆杂草。
from pyecharts import Bar x = ["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋"] y1 = [5, 20, 36, 10, 75] y2 = [10, 25, 8, 60, 20] bar = Bar(title = "产品月销量",width = 600,height = 420) bar.add(name = "商家A", x_axis = x, y_axis = y1) bar.add(name = "商家B", x_axis = x, y_axis = y2,is_xaxis_boundarygap =True) # 导出绘图html文件,可直接用浏览器打开 bar.render('柱形图示范.html') bar
2,折线图
折线图适合描述两个变量之间的函数关系,例如常用它来描述一个变量随时间的变化趋势。
from pyecharts import Line x = ['2018-{:0>2d}'.format(s) for s in range(1,13)] y1 = [5,10,26,30,35,30,20,26,40,46,40,50] y2 = [8,20,24,36,40,36,40,45,50,53,48,58] line = Line(title = "月销售总额",width = 600,height = 420) line.add(name = "商家A", x_axis = x, y_axis = y1, line_width = 3,line_color = 'red') line.add(name = "商家B", x_axis = x, y_axis = y2, yaxis_min = 0,yaxis_max = 100,is_xaxis_boundarygap = False, is_datazoom_show =True,line_width = 2,line_color = 'cyan') line.render('折线图示范.html') line
3,散点图
散点图适合表现大量样本的多个属性的分布规律。散点图的每个点表示一个样本,每个坐标维度表示一个属性。
from pyecharts import Scatter import pandas as pd dfboy = pd.DataFrame() dfboy['weight'] = [56,67,65,70,57,60,80,85,76,64] dfboy['height'] = [162,170,168,172,168,172,180,176,178,170] dfgirl = pd.DataFrame() dfgirl['weight'] = [50,62,60,70,57,45,62,65,70,56] dfgirl['height'] = [155,162,165,170,166,158,160,170,172,165] scatter = Scatter(title = "体格数据",width = 600,height = 420) scatter.add(name = "boy", x_axis = dfboy['weight'], y_axis = dfboy['height']) scatter.add(name = "girl", x_axis = dfgirl['weight'], y_axis = dfgirl['height'], yaxis_min = 130,yaxis_max = 200,xaxis_min = 30,xaxis_max = 100) scatter.render("散点图示范.html") scatter
当样本属性维度多于2个时,散点图可以使用点的颜色或大小等方式来表达更多属性维度。下面示范使用点的大小表示第3个维度。
from pyecharts import Scatter import pandas as pd def custom_formatter(params): return (params.value[3] + ':' + str(params.value[0]) +',' +str(params.value[1]) + ',' +str(params.value[2])) df = pd.DataFrame() df['country'] = ["中国",'美国','德国','法国','英国','日本','俄罗斯','印度','澳大利亚','加拿大'] df['life-expectancy'] = [76.9,79.1,81.1,81.9,81.4,83.5,73.13,66.8,81.8,81.7] df['capita-gdp'] = [13334,53354,44053,37599,38225,36162,23038,5903,44056,43294] df['population'] = [1376048943,321773631,80688545,64395345,64715810,126573481,143456918, 1311050527,23968973,35939927] scatter = Scatter(title = "各国发展水平",width = 600,height = 420) scatter.add(name = '', x_axis = df['capita-gdp'], # params.values[0] y_axis = df['life-expectancy'], # params.values[1] extra_data = df['population'].values.tolist(), # params.values[2] extra_name = df['country'].values.tolist(), # params.values[3] tooltip_formatter=custom_formatter, #自定义提示框格式内容 is_visualmap=True, visual_orient="horizontal", visual_type = 'size', #可以是size或者color visual_dimension=2, visual_range=[20000000, 1500000000], ) scatter
小红:你上面说的这些范例大部分还是挺简单的,可能这个用散点图来显示各个国家的发展水平的例子相对复杂一些,是不是如果有第3维数据就要用extra_data来传入呢?然后用visual_dimension来指定用点的颜色或者点的大小表示的是第几维的数据。这里的话,用点的大小表示了population也就是各个国家人口的多少。对吗?
小明:一点也没有错,你可以仿照着这个例子试试用点的颜色来表示第3维度的数据,应该不难懂的。
小红:棒棒的。除了这三种最常用图表外。还有一些别的好用的表现力强的图表可以推荐一些吗?
小明:你还真是学而不厌。那我再给你演示一下箱型图,词云图以及地理坐标系图吧。
4,箱型图
箱型图适合表现一组数据的统计分布规律,它能显示出一组数据的最大值、最小值、中位数、及上下四分位数。
箱型图的进阶版本是小提琴图,可以展示数据的密度估计曲线,可以用seaborn画出。
from pyecharts import Boxplot x =['1班','2班','3班','4班'] y1=[78, 98, 56, 78, 90.0, 45, 78, 20, 87, 86, 74, 89, 94] y2=[89, 82, 45, 67, 68, 78.0, 79, 98, 71, 56, 78, 81, 80] y3=[90, 80, 60, 89, 76, 73.0, 72, 92, 89, 87, 65, 66, 76] y4=[82, 72, 55, 100, 90.0, 78, 69, 67, 87, 66, 78, 71, 82] box = Boxplot(title = '考试成绩箱型图',width = 600,height = 420) # 预处理数据计算最大值,最小值,中位数以及上下四分位数 y_prepared = box.prepare_data([y1,y2,y3,y4]) box.add(name = '',x_axis = x,y_axis = y_prepared)
附:用seaborn 进行小提琴图的绘制
import seaborn as sns %matplotlib inline %config InlineBackend.figure_format = 'svg' #设置风格 sns.set(style="white", context="notebook") #处理中文问题 sns.set_style({'font.sans-serif':['simhei', 'Arial']}) dfdata = pd.DataFrame() dfdata['score'] = y1 + y2 + y3 + y4 dfdata['class'] = ['1班']*len(y1)+['2班']*len(y2)+['3班']*len(y3)+['4班']*len(y4) ax = sns.violinplot(x= 'class', y = 'score',data = dfdata, palette = 'hls', # 设置调色板 inner = 'box'# 设置内部显示类型 → “box”, “quartile”, “point”, “stick”, None )
5,词云图
词云图适合表现不同关键词的出现频率或重要性程度。
from pyecharts import WordCloud words = ['python','jupyter','numpy','pandas','matplotlib','sklearn', 'xgboost','lightGBM','simpy','keras','tensorflow', 'hive','hadoop','spark'] counts = [100,90,65,95,50,60,70,70,20,70,80,80,60,60] cloud = WordCloud(title = '数据算法常用工具',width = 600,height = 420) cloud.add(name = 'utils',attr = words,value = counts, shape = "circle",word_size_range = (10,70)) cloud
6,地理坐标系图
地理坐标系图适合表现和国家,省份,以及城市,经纬度位置相关联的数据分布规律。
pyecharts中Geo表达和城市关联的数据,Map表达和国家和省份关联的数据。
# 安装地图附属包 !pip install echarts-countries-pypkg !pip install echarts-china-provinces-pypkg !pip install echarts-china-cities-pypkg
# 全国城市地图示例 from pyecharts import Geo data = [ ("海门", 9),("鄂尔多斯", 12),("招远", 12),("舟山", 12),("齐齐哈尔", 14),("盐城", 15), ("惠州", 37),("江阴", 37),("蓬莱", 37),("韶关", 38),("嘉峪关", 38),("广州", 38), ("张家港", 52),("三门峡", 53),("锦州", 54),("南昌", 54),("柳州", 54),("三亚", 54), ("呼和浩特", 58),("成都", 58),("大同", 58),("镇江", 59),("桂林", 59),("张家界", 59), ("北京", 79),("徐州", 79),("衡水", 80),("包头", 80),("绵阳", 80),("乌鲁木齐", 84), ("菏泽", 194),("合肥", 229),("武汉", 273),("大庆", 279)] geo = Geo( "全国部分城市空气质量", title_color="#fff", title_pos="center", width=800, height=600, background_color="#404a59", ) attr, value = geo.cast(data) geo.add( "", attr, value, visual_range=[0, 200], visual_text_color="#fff", symbol_size=15, is_visualmap=True, ) geo
# 全国省份地图 from pyecharts import Map value = [155, 10, 66, 78, 44, 38, 88, 50, 20] attr = ["福建","山东","北京","上海","江西","新疆","内蒙古","云南","重庆"] m = Map("全国省份地图", width=600, height=400) m.add("", attr, value, maptype='china', is_visualmap=True, is_piecewise=True, visual_text_color="#000", visual_range_text=["", ""], pieces=[ {"max": 160, "min": 81, "label": "高"}, {"max": 80, "min": 51, "label": "中"}, {"max": 50, "min": 0, "label": "低"}, ]) m
# 世界地图示例 from pyecharts import Map countries= ["China", "Canada", "India", "Russia", "United States","Japan"] capita_gdp = [13334, 43294, 5903, 23038, 53354,36162] population = [1376048943, 35939927, 1311050527, 143456918, 321773631,126573481] life_expectancy = [76.9,81.7,66.8,73.13,79.1,73.13] m = Map("世界经济发展水平", width=800, height=500) m.add( "人均GDP", attr = countries, value = capita_gdp, maptype="world", is_visualmap=True, visual_range = [5000,60000], visual_text_color="#000", is_map_symbol_show=False, visual_orient="horizontal" ) m
二,图表配置
小红:你上面介绍的这些基本图表都蛮实用的,做起来好像也不难。但是如果我想对图表尺寸,线型颜色,坐标轴刻度等一些细节进行调整,而不是采用默认配置,应该怎么做呢?
小明:你说的这个叫做图表配置。在pyecharts里有3种进行图表配置的方法。
第一个是修改图表主题风格:利用configure或use_theme指定图表主题风格,对图表整体颜色风格产生影响。
第二个是初始化图表通用属性:在创建图表时指定图表height,title等属性,对图像尺寸和标题等通用属性产生影响。
第三个是配置特定元素属性:可以使用add给图表配置xyAxis,datazoom,lineStyle等特定元素属性。
1,修改图表主题风格
可以使用use_theme修改单个图表主题,也可以用configure修改全局图表风格。
# 默认主题效果 import random from pyecharts import Bar X_AXIS = ["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"] bar = Bar("默认主题效果", "这里是副标题") bar.add("商家A", X_AXIS, [random.randint(10, 100) for _ in range(6)]) bar.add("商家B", X_AXIS, [random.randint(10, 100) for _ in range(6)]) bar.add("商家C", X_AXIS, [random.randint(10, 100) for _ in range(6)]) bar.add("商家D", X_AXIS, [random.randint(10, 100) for _ in range(6)]) bar
# 使用dark主题 import random from pyecharts import Bar X_AXIS = ["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"] bar = Bar("dark主题展示", "这里是副标题") bar.use_theme("dark") bar.add("商家A", X_AXIS, [random.randint(10, 100) for _ in range(6)]) bar.add("商家B", X_AXIS, [random.randint(10, 100) for _ in range(6)]) bar.add("商家C", X_AXIS, [random.randint(10, 100) for _ in range(6)]) bar.add("商家D", X_AXIS, [random.randint(10, 100) for _ in range(6)]) bar
# 安装主题插件获取更多主题 !pip install echarts-themes-pypkg
主题插件支持以下主题
-
vintage
-
macarons 美
-
shine 美+++
-
roma 美
-
westeros
-
wonderland
-
chalk
-
halloween 美+
-
essos
-
walden
-
purple-passion
-
romantic
import random from pyecharts import Bar X_AXIS = ["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"] bar = Bar("shine主题展示", "这里是副标题") bar.use_theme("shine") bar.add("商家A", X_AXIS, [random.randint(10, 100) for _ in range(6)]) bar.add("商家B", X_AXIS, [random.randint(10, 100) for _ in range(6)]) bar.add("商家C", X_AXIS, [random.randint(10, 100) for _ in range(6)]) bar.add("商家D", X_AXIS, [random.randint(10, 100) for _ in range(6)]) bar
如果要设置某个主题风格应用到所有图表,可以在绘图开始前用configure进行设置。
from pyecharts import configure # 将这行代码置于首部 configure(global_theme='shine') from pyecharts import Pie attr = ["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"] value = [11, 12, 13, 10, 10, 10] pie = Pie("销售额占比",width = 800,height = 520) pie.add("", attr, value, is_label_show=True)
2,修改图表通用属性
图表通用属性指的是图表的title,subtitle,height,width,title_pos,title_color,title_text_size,background_color等属性,这些属性对所有类型的图表都适用。
所有通用属性设置方式详细参见pyecharts的官方文档:https://github.com/lyhue1991/pyecharts/blob/master/docs/zh-cn/charts_configure.md
from pyecharts import Pie attr = ["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"] value = [11, 12, 13, 10, 10, 10] # 初始化图表通用属性 pie = Pie(title = "销售额占比", title_pos = 'center', # 标题居中 title_top = 'bottom', # 标题在底部 title_color = '#0000ff', # 标题颜色设置为蓝色,256位rgb格式 background_color = "#aee", # 设置背景颜色,16位rgb格式 width = 600,height = 420) pie.add("", attr, value, is_label_show=True)
3,配置特定元素属性
特定元素属性包括xyAxis,dataZoom,lineStyle,markLine-markPoint,visualMap等元素属性,这些元素只在某些种类的图表中适用。例如xyAxis只在Line、Bar、Scatter、EffectScatter、Kline这几类图表中适用。
所有特定元素属性设置方式详细参见官方文档:https://github.com/lyhue1991/pyecharts/blob/master/docs/zh-cn/charts_configure.md
# 设置xyAxis示范 from pyecharts import Line x = ['2018-{:0>2d}'.format(s) for s in range(1,13)] y1 = [5,10,26,30,35,30,20,26,40,46,40,50] y2 = [8,20,24,36,40,36,40,45,50,53,48,58] line = Line(title = "月销售总额",width = 600,height = 420) line.add(name = "商家A", x_axis = x, y_axis = y1) line.add(name = "商家B", x_axis = x, y_axis = y2, # #=====设置xyAxis===== yaxis_min = 0,yaxis_max = 100, # 设置y坐标轴刻度范围 xaxis_name = '月份', yaxis_name = '销售额', #x轴名称,y轴名称 xaxis_name_gap = 40, # x轴名称与轴距离 xaxis_rotate = 30, # x轴刻度旋转角度 is_splitline_show = True, # 显示y轴网格线 is_xaxislabel_align = True # x轴刻度和标签是否对齐 ) line
# 设置dataZoom示范 from pyecharts import Line x = ['2018-{:0>2d}'.format(s) for s in range(1,13)] y1 = [5,10,26,30,35,30,20,26,40,46,40,50] y2 = [8,20,24,36,40,36,40,45,50,53,48,58] line = Line(title = "月销售总额",width = 600,height = 420) line.add(name = "商家A", x_axis = x, y_axis = y1) line.add(name = "商家B", x_axis = x, y_axis = y2, # #=====设置xyAxis===== is_xaxis_boundarygap = False, # x坐标刻度对准数据,而不是作为分类边界 # #=====设置dataZoom===== is_datazoom_show = True, #显示 dataZoom控制条 datazoom_type = 'both' # 可以是slider,inside或both # # ) line
# 设置lineStyle示范 from pyecharts import Line x = ['2018-{:0>2d}'.format(s) for s in range(1,13)] y1 = [5,10,26,30,35,30,20,26,40,46,40,50] y2 = [8,20,24,36,40,36,40,45,50,53,48,58] line = Line(title = "月销售总额",width = 600,height = 420) line.add(name = "商家A", x_axis = x, y_axis = y1, # #=====设置lineStyle===== line_width = 2, line_opacity = 0.5, # 透明度 line_color = 'red' ) line.add(name = "商家B", x_axis = x, y_axis = y2, # #=====设置xyAxis===== is_xaxis_boundarygap = False, # x坐标刻度对准数据,而不是作为分类边界 # #=====设置dataZoom===== is_datazoom_show = True, #显示 dataZoom控制条 # #=====设置lineStyle===== line_width = 3, line_color = '#11ffbb', line_type = 'dashed', # 线型,可以是solid,dashed,或者dotted ) line
# 设置markPoint和markLine示范 from pyecharts import Line x = ['2018-{:0>2d}'.format(s) for s in range(1,13)] y1 = [5,10,26,30,35,30,20,26,40,46,40,50] y2 = [8,20,24,36,40,36,40,45,50,53,48,58] line = Line(title = "月销售总额",width = 600,height = 420) line.add(name = "商家A", x_axis = x, y_axis = y1, # #=====设置lineStyle===== line_width = 2, line_opacity = 0.5, # 透明度 line_color = 'red', # #=====设置markPoint&markLine===== mark_point = ['min','max'], #标记点 mark_line = ['average'] #标记线 ) line.add(name = "商家B", x_axis = x, y_axis = y2, # #=====设置xyAxis===== is_xaxis_boundarygap = False, # x坐标刻度对准数据,而不是作为分类边界 yaxis_min = 0,yaxis_max = 100, # 设置y坐标轴刻度范围 # #=====设置dataZoom===== is_datazoom_show = True, #显示 dataZoom控制条 # #=====设置lineStyle===== line_width = 3, line_type = 'dashed', # 线型,可以是solid,dashed,或者dotted #=====设置markPoint&markLine===== mark_point = [{"coord": ['2018-09', 60], "name": "2018/09销售目标"}, {"coord": ['2018-11', 80], "name": "2018/10销售目标"}] # 自定义标记点 ) line
如果需要反复使用相同的配置,可以使用Style类简化这个过程。
from pyecharts import Pie,Style pie = Pie('各类电影中"好片"所占的比例', "数据来自豆瓣", title_pos='center') style = Style() pie_style = style.add( label_pos="center", is_label_show=True, label_text_color=None ) pie.add( "", ["剧情", ""], [25, 75], center=[10, 30], radius=[18, 24], **pie_style ) pie.add( "", ["奇幻", ""], [24, 76], center=[30, 30], radius=[18, 24], **pie_style ) pie.add( "", ["爱情", ""], [14, 86], center=[50, 30], radius=[18, 24], **pie_style ) pie.add( "", ["惊悚", ""], [11, 89], center=[70, 30], radius=[18, 24], **pie_style ) pie.add( "", ["冒险", ""], [27, 73], center=[90, 30], radius=[18, 24], **pie_style ) pie.add( "", ["动作", ""], [15, 85], center=[10, 70], radius=[18, 24], **pie_style ) pie.add( "", ["喜剧", ""], [54, 46], center=[30, 70], radius=[18, 24], **pie_style ) pie.add( "", ["科幻", ""], [26, 74], center=[50, 70], radius=[18, 24], **pie_style ) pie.add( "", ["悬疑", ""], [25, 75], center=[70, 70], radius=[18, 24], **pie_style ) pie.add( "", ["犯罪", ""],[28, 72],center=[90, 70], radius=[18, 24], legend_top="bottom", **pie_style ) pie
三,图表组合
小红:你上面展示的这些图表配置的范例我基本上get到了,简单地说,就是可以修改图表主题,配置图表通用属性,以及配置特定元素属性,找到相应的范例参照来改就可以了。但有时候我想把多个不同类型的图表画在一张图上,比如在一张图上同时画柱状图和折线图,绘制包含多个子图的图表,pyecharts可以做到吗?
小明:当然可以喽。pyecharts可以利用图表组合将多个基本图表加工成内容更加丰富,表现力更强的组合图表。在pyecharts中对图表进行组合的方式主要有:Grid, Overlap, Page, Timeline这四种方式。
1,Grid图表组合
Grid图表组合可以并行显示多张图,类似子图的作用。Grid中的子图可以是Overlap。
from pyecharts import Bar, Line, Grid x = ["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"] y1 = [5, 20, 36, 10, 75, 90] y2 = [10, 25, 8, 60, 20, 80] bar = Bar("柱状图示例", height=720) bar.add("商家A", x, y1, is_stack=True) bar.add("商家B", x, y2, is_stack=True) line = Line("折线图示例", title_top="50%") x = ["周一", "周二", "周三", "周四", "周五", "周六", "周日"] line.add( "最高气温", x, [11, 11, 15, 13, 12, 13, 10], mark_point=["max", "min"], mark_line=["average"], ) line.add( "最低气温", x, [1, -2, 2, 5, 3, 2, 0], mark_point=["max", "min"], mark_line=["average"], legend_top="50%", ) grid = Grid() #利用grid_bottom,grid_top,grid_left,grid_right四个参数控制子图的相对位置 grid.add(bar, grid_bottom="60%") grid.add(line, grid_top="60%") grid
利用Grid解决dataZoom与X轴标签重叠的问题
from pyecharts import Bar, Grid x = [ "2019-01-01", "2019-01-02", "2019-01-03", "2019-01-04", "2019-01-05", "2019-01-06", "2019-01-07", "2019-01-08", "2019-01-09", ] y = [10, 20, 30, 40, 50, 60, 70, 80, 90] grid = Grid() bar = Bar("利用 Grid 解决 dataZoom 与 X 轴标签重叠问题") bar.add("", x, y, is_datazoom_show=True, xaxis_interval=0, xaxis_rotate=30) # 把 bar 加入到 grid 中,并适当调整 grid_bottom 参数,使 bar 图整体上移 grid.add(bar, grid_bottom="25%")
2,Overlap图表组合
Overlap图表组合可以将不同类型的图表画在同一张图上。
from pyecharts import Bar, Line, Overlap attr = ['A', 'B', 'C', 'D', 'E', 'F'] v1 = [10, 20, 30, 40, 50, 60] v2 = [38, 28, 58, 48, 78, 68] bar = Bar("Line - Bar 示例") bar.add("bar", attr, v1) line = Line() line.add("line", attr, v2) overlap = Overlap() overlap.add(bar) overlap.add(line) overlap
Overlap显示双坐标轴
from pyecharts import Line, Bar, Overlap attr = ["{}月".format(i) for i in range(1, 13)] v1 = [2.0, 4.9, 7.0, 23.2, 25.6, 76.7, 135.6, 162.2, 32.6, 20.0, 6.4, 3.3] v2 = [2.6, 5.9, 9.0, 26.4, 28.7, 70.7, 175.6, 182.2, 48.7, 18.8, 6.0, 2.3] v3 = [2.0, 2.2, 3.3, 4.5, 6.3, 10.2, 20.3, 23.4, 23.0, 16.5, 12.0, 6.2] bar = Bar() bar.add("蒸发量", attr, v1) bar.add("降水量", attr, v2, yaxis_formatter=" ml", yaxis_interval=50, yaxis_max=250) line = Line() line.add("平均温度", attr, v3, yaxis_formatter=" °C", yaxis_interval=5) overlap = Overlap(width=800, height=500) # 默认不新增 x y 轴,并且 x y 轴的索引都为 0 overlap.add(bar) # 新增一个 y 轴,此时 y 轴的数量为 2,第二个 y 轴的索引为 1(索引从 0 开始),所以设置 yaxis_index = 1 # 由于使用的是同一个 x 轴,所以 x 轴部分不用做出改变 overlap.add(line, yaxis_index=1, is_add_yaxis=True) overlap
3,Pages图表组合
Pages可以将多张图表按顺序展示在一张网页中,适合制作图形化报表。Pages中的图表可以是Grid,Overlap或Timeline.
from pyecharts import Bar, Scatter3D from pyecharts import Page page = Page() # bar attr = ["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"] v1 = [5, 20, 36, 10, 75, 90] v2 = [10, 25, 8, 60, 20, 80] bar = Bar("柱状图数据堆叠示例",width = 500,height = 300) bar.add("商家A", attr, v1, is_stack=True) bar.add("商家B", attr, v2, is_stack=True) page.add(bar) # scatter3D import random data = [ [random.randint(0, 100), random.randint(0, 100), random.randint(0, 100)] for _ in range(80) ] range_color = [ '#313695', '#4575b4', '#74add1', '#abd9e9', '#e0f3f8', '#ffffbf', '#fee090', '#fdae61', '#f46d43', '#d73027', '#a50026'] scatter3D = Scatter3D("3D 散点图示例", width= 500, height=300) scatter3D.add("", data, is_visualmap=True, visual_range_color=range_color) page.add(scatter3D) page
4,Timeline图表组合
Timeline可以将多个图表制作成动画。
from pyecharts import Bar, Timeline from random import randint attr = ["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"] bar_1 = Bar("2012 年销量", "数据纯属虚构") bar_1.add("春季", attr, [randint(10, 100) for _ in range(6)]) bar_1.add("夏季", attr, [randint(10, 100) for _ in range(6)]) bar_1.add("秋季", attr, [randint(10, 100) for _ in range(6)]) bar_1.add("冬季", attr, [randint(10, 100) for _ in range(6)]) bar_2 = Bar("2013 年销量", "数据纯属虚构") bar_2.add("春季", attr, [randint(10, 100) for _ in range(6)]) bar_2.add("夏季", attr, [randint(10, 100) for _ in range(6)]) bar_2.add("秋季", attr, [randint(10, 100) for _ in range(6)]) bar_2.add("冬季", attr, [randint(10, 100) for _ in range(6)]) bar_3 = Bar("2014 年销量", "数据纯属虚构") bar_3.add("春季", attr, [randint(10, 100) for _ in range(6)]) bar_3.add("夏季", attr, [randint(10, 100) for _ in range(6)]) bar_3.add("秋季", attr, [randint(10, 100) for _ in range(6)]) bar_3.add("冬季", attr, [randint(10, 100) for _ in range(6)]) bar_4 = Bar("2015 年销量", "数据纯属虚构") bar_4.add("春季", attr, [randint(10, 100) for _ in range(6)]) bar_4.add("夏季", attr, [randint(10, 100) for _ in range(6)]) bar_4.add("秋季", attr, [randint(10, 100) for _ in range(6)]) bar_4.add("冬季", attr, [randint(10, 100) for _ in range(6)]) bar_5 = Bar("2016 年销量", "数据纯属虚构") bar_5.add("春季", attr, [randint(10, 100) for _ in range(6)]) bar_5.add("夏季", attr, [randint(10, 100) for _ in range(6)]) bar_5.add("秋季", attr, [randint(10, 100) for _ in range(6)]) bar_5.add("冬季", attr, [randint(10, 100) for _ in range(6)], is_legend_show=True) timeline = Timeline(is_auto_play=True, timeline_bottom=0, timeline_play_interval=800 # 每800ms播放一张 ) timeline.add(bar_1, '2012 年') timeline.add(bar_2, '2013 年') timeline.add(bar_3, '2014 年') timeline.add(bar_4, '2015 年') timeline.add(bar_5, '2016 年') timeline
往期阅读
以上所述就是小编给大家介绍的《5分钟学会Pyecharts数据可视化》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!
猜你喜欢:- 手把手教你学会 LDA 话题模型可视化 pyLDAvis 库
- 想快速学会数据可视化?这里有一门4小时的Kaggle微课程
- 30 分钟学会 XGBoost
- 30 分钟学会 XGBoost
- 学会使用 curl 命令
- 轻松学会代理模式
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
The Master Switch
Tim Wu / Knopf / 2010-11-2 / USD 27.95
In this age of an open Internet, it is easy to forget that every American information industry, beginning with the telephone, has eventually been taken captive by some ruthless monopoly or cartel. Wit......一起来看看 《The Master Switch》 这本书的介绍吧!