LeetCode70 —— 爬楼梯

栏目: 编程工具 · 发布时间: 6年前

内容简介:假设你正在爬楼梯。需要 n 阶你才能到达楼顶。 每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢? 注意:给定 n 是一个正整数。 示例 1:示例 2:每次可以爬 1 或 2 个台阶。当我们爬 4 个台阶时,就是爬 3 个台阶的方法数,加上爬 2 个台阶的方法数,等于 F(3) + F(2) = 3 + 2 = 5。所以当我们爬 N 个台阶,就有 F(N - 1) + F(N - 2) 种方法。

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。 每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢? 注意:给定 n 是一个正整数。 示例 1:

输入: 2
输出: 2
解释: 有两种方法可以爬到楼顶。
1.  1 阶 + 1 阶
2.  2 阶
复制代码

示例 2:

输入: 3
输出: 3
解释: 有三种方法可以爬到楼顶。
1.  1 阶 + 1 阶 + 1 阶
2.  1 阶 + 2 阶
3.  2 阶 + 1 阶
复制代码

思路

每次可以爬 1 或 2 个台阶。当我们爬 4 个台阶时,就是爬 3 个台阶的方法数,加上爬 2 个台阶的方法数,等于 F(3) + F(2) = 3 + 2 = 5。所以当我们爬 N 个台阶,就有 F(N - 1) + F(N - 2) 种方法。

解决方案

方案一:暴力破解

我们可以用递归的方法得到所有小于N的方法数,并把它们相加得出结果。递归结束的标志为 N=1 或 N =2。

var climbStairs = function(n) {
    if (n == 1) return 1
    if (n == 2) return 2
    return climbStairs(n - 1) + climbStairs(n - 2)
};
复制代码

时间复杂度 O( )。这种暴力解题的方法会超出时间限制,显然不是我们想要的。

方案二:优化暴力破解

从上一种方法我们可以发现,每一步的结果都做了上一步的重复计算。比如F(6) + F(5) 后会计算 F(5) + F(4),F(5) 我们已经计算过了,就不要重复计算了。所以我们可以用一个数组来储存计算结果,方便重复利用。

var climbStairs = function(n) {
    let arr = []
    function climb(n) {
        if (n == 1) return 1
        if (n == 2) return 2
        if (arr[n] > 0) return arr[n]
        
        arr[n] = climb(n - 1) + climb(n - 2)
        return arr[n]
    }
    return climb(n)
};
复制代码

时间复杂度 O(n),优化之后提高了速度,已经不会超出时间限制了。

方案三:问题分解

和递归的思路一样,把一个大问题分解成多个小问题,只是这次我们使用循环的方式,减少内存的开销。

var climbStairs = function(n) {
    if (n == 1) return 1
    if (n == 2) return 2

    let arr = []
    arr[1] = 1
    arr[2] = 2
    for (let i = 3; i<= n; i++) {
        arr[i] = arr[i - 1] + arr[i - 2]
    }
    return arr[n]
};
复制代码

时间复杂度 O(n),优化了内存的消耗,速度没有提升。

方案四:斐波那契数

从上一个方案我们可以看出这是一个斐波那契数列。

var climbStairs = function(n) {
    if (n == 1) return 1
    if (n == 2) return 2
    
    let first = 1
    let second = 2
    for (let i = 3; i<= n; i++) {
        let third = first + second
        first = second
        second = third
    }
    return second
};
复制代码

时间复杂度 O(n)


以上所述就是小编给大家介绍的《LeetCode70 —— 爬楼梯》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

算法图解

算法图解

[美] Aditya Bhargava / 袁国忠 / 人民邮电出版社 / 2017-3 / 49.00元

本书示例丰富,图文并茂,以让人容易理解的方式阐释了算法,旨在帮助程序员在日常项目中更好地发挥算法的能量。书中的前三章将帮助你打下基础,带你学习二分查找、大O表示法、两种基本的数据结构以及递归等。余下的篇幅将主要介绍应用广泛的算法,具体内容包括:面对具体问题时的解决技巧,比如,何时采用贪婪算法或动态规划;散列表的应用;图算法;K最近邻算法。一起来看看 《算法图解》 这本书的介绍吧!

XML、JSON 在线转换
XML、JSON 在线转换

在线XML、JSON转换工具

html转js在线工具
html转js在线工具

html转js在线工具

HEX CMYK 转换工具
HEX CMYK 转换工具

HEX CMYK 互转工具