MySQL锁机制

栏目: 数据库 · 发布时间: 5年前

内容简介:因为数据也是一种供许多用户共享的资源,如何保证数据并发访问的一致性、有效性是所有数据库必须解决的一个问题,锁冲突也是影响数据库并发访问性能的一个重要因素,所以进一步学习MySQL,就需要去了解它的锁机制。相对其他数据库而言,MySQL 的锁机制比较简单,其最显著的特点是不同的存储引擎支持不同的锁机制。比如,MyISAM和MEMORY存储引擎采用的是表级锁(table-level locking);BDB存储引擎采用的是页面锁(page-level locking),但也支持表级锁;InnoDB存储引擎既支持
MySQL锁机制
**进一步学习MySQL**

为什么要学习锁机制

锁是计算机协调多个进程或线程并发访问某一资源的机制。

因为数据也是一种供许多用户共享的资源,如何保证数据并发访问的一致性、有效性是所有数据库必须解决的一个问题,锁冲突也是影响数据库并发访问性能的一个重要因素,所以进一步学习MySQL,就需要去了解它的锁机制。

本文主要记录学习了 MyISAM 和 InnoDB 这两个存储引擎,而且更加关注的是 InnoDB(因为经常用:grin:)

MySQL锁概述:

相对其他数据库而言,MySQL 的锁机制比较简单,其最显著的特点是不同的存储引擎支持不同的锁机制。比如,MyISAM和MEMORY存储引擎采用的是表级锁(table-level locking);BDB存储引擎采用的是页面锁(page-level locking),但也支持表级锁;InnoDB存储引擎既支持行级锁(row-level locking),也支持表级锁,但默认情况下是采用行级锁。 MySQL这3种锁的特性可大致归纳如下。

开销、加锁速度、死锁、粒度、并发性能 ①:表级锁:开销小,加锁快;不会出现死锁;锁定粒度大,发生锁冲突的概率最高,并发度最低。

②:行级锁:开销大,加锁慢;会出现死锁;锁定粒度最小,发生锁冲突的概率最低,并发度也最高。

③:页面锁:开销和加锁时间界于表锁和行锁之间;会出现死锁;锁定粒度界于表锁和行锁之间,并发度一般。

从上述特点可见,很难笼统地说哪种锁更好,只能就具体应用的特点来说哪种锁更合适!仅从锁的角度来说:表级锁更适合于以查询为主,只有少量按索引条件更新数据的应用,如Web应用;而行级锁则更适合于有大量按索引条件并发更新少量不同数据,同时又有并发查询的应用,如一些在线事务处理(OLTP)系统。由于BDB已经被InnoDB取代,即将成为历史(所以现在基本都在使用InnoDB存储引擎)。

MyISAN存储引擎

MyISAM 存储引擎只支持表锁,这也是 MySQL 开始几个版本中唯一支持的锁类型。

MySQL表级锁

查询表锁争用情况

mysql> show status like 'table%';
+----------------------------+-------+
| Variable_name              | Value |
+----------------------------+-------+
| Table_locks_immediate      | 4     |
| Table_locks_waited         | 0     |
| Table_open_cache_hits      | 4     |
| Table_open_cache_misses    | 8     |
| Table_open_cache_overflows | 0     |
+----------------------------+-------+
5 rows in set (0.00 sec)
复制代码

如果 Table_locks_waited 的值比较高,则说明存在着较严重的表级锁争用情况。

MySQL的表级锁的两种模式

  • 表共享读锁(Table Read Lock)
  • 表独占写锁(Table Write Lock)

MySQL中的表锁兼容性:

请求锁模式

矩阵结果表示是否兼容

当前锁模式

None 读锁 写锁
读锁
写锁

也就是说,在MyISAM读模式下,不会阻塞其它用户的同一表读操作,但是会阻塞写操作;而在写模式下,会同时阻塞其它用户同一表的读写操作。

测试MyISAM的写锁模式

新建一个user表,引擎是MyISAM:

mysql> desc user;
+---------+-------------+------+-----+---------+----------------+
| Field   | Type        | Null | Key | Default | Extra          |
+---------+-------------+------+-----+---------+----------------+
| id      | int(11)     | NO   | PRI | NULL    | auto_increment |
| name    | varchar(20) | YES  |     | NULL    |                |
| age     | int(3)      | YES  |     | NULL    |                |
| address | varchar(60) | YES  |     | NULL    |                |
+---------+-------------+------+-----+---------+----------------+
4 rows in set (0.01 sec)
复制代码
session A session B
获得user表的锁锁定
mysql> lock table user write;
Query OK, 0 rows affected (0.00 sec)
mysql>select * from user;
Empty set (0.00 sec)
mysql> insert into user(id, name, age, address) values(1, 'test', 18, 'test address');
Query OK,1 row affected (0.02 sec)
mysql> select * from user\G
被阻塞了,一直卡住在这,没有返回结果
mysql> unlock tables;
Query OK, 0 rows affected (0.00 sec)
等待
mysql> select * from user\G
**********
name: test
age: 18
address: test address
1 row in set (5 min 29.61 sec)

可以看出,通过 lock table user write 将user表锁住后,其它用户进行对该表操作时,都会被阻塞。

测试MyISAM读锁

在用LOCK TABLES给表显式加表锁时,必须同时取得所有涉及到表的锁,并且MySQL不支持锁升级。也就是说,在执行LOCK TABLES后,只能访问显式加锁的这些表,不能访问未加锁的表;同时,如果加的是读锁,那么只能执行查询操作,而不能执行更新操作。其实,在自动加锁的情况下也基本如此,MyISAM总是一次获得 SQL 语句所需要的全部锁。这也正是MyISAM表不会出现死锁(Deadlock Free)的原因。

session A session B
获得user表的读锁定
mysql> lock table user read;
Query OK, 0 rows affected (0.00 sec)
mysql> select * from user where id = 1 \G
中从查询速度中可以看出,sessionB并没有被阻塞
1 row in set (0.00 sec)
由于没有获取order表的读锁定,所以不能查询order表
mysql> select * from order ;
ERROR 1100 (HY000): Table 'order' was not locked with LOCK TABLES
但是session B可以访问oder表,不阻塞
mysql> select * from order ;
Empty set (0.00 sec)
获得读锁定时,不能进行写操作
mysql> update user set name = 'wahaha' where id = 1;
ERROR 1099 (HY000): Table 'user' was locked with a READ lock and can't be updated
其它session进行更新操作时,会被阻塞
mysql> update user set name = 'wahaha' where id = 1;
等待ing
释放锁
mysql> unlock tables;
Query OK, 0 rows affected (0.00 sec)
等待
mysql> update user set name = 'wahaha' where id = 1;
Query OK, 1 row affected (1 min 6.43 sec)

MyISAM支持并发插入

MyISAM表的读和写是串行的,但这是就总体而言的。在一定条件下,MyISAM表也支持查询和插入操作的并发进行。MyISAM存储引擎有一个 系统变量concurrent_insert,专门用以控制其并发插入的行为,其值分别可以为0、1或2。

  • 当concurrent_insert设置为0时,不允许并发插入。
  • 当concurrent_insert设置为1时,如果MyISAM表中没有空洞(即表的中间没有被删除的行),MyISAM允许在一个进程读表的同时,另一个进程从表尾插入记录。这也是MySQL的默认设置。
  • 当concurrent_insert设置为2时,无论MyISAM表中有没有空洞,都允许在表尾并发插入记录。

MyISAM的锁调度

MyISAM存储引擎的读锁和写锁是互斥的,读写操作是串行的。 但它认为 写锁的优先级比读锁高 ,所以即使读请求先到锁等待队列,写请求后到,写锁也会插到读锁请求之前! 这也正是MyISAM表不太适合于有大量更新操作和查询操作应用的原因,因为,大量的更新操作会造成查询操作很难获得读锁,从而可能永远阻塞。 可以通过一些设置来调节MyISAM的调度行为。

  • 通过指定启动参数low-priority-updates,使MyISAM引擎默认给予读请求以优先的权利。
  • 通过执行命令SET LOW_PRIORITY_UPDATES=1,使该连接发出的更新请求优先级降低。
  • 通过指定INSERT、UPDATE、DELETE语句的LOW_PRIORITY属性,降低该语句的优先级。

虽然上面3种方法都是要么更新优先,要么查询优先的方法,但还是可以用其来解决查询相对重要的应用(如用户登录系统)中,读锁等待严重的问题。 另外,MySQL也提供了一种折中的办法来调节读写冲突,即给系统参数max_write_lock_count设置一个合适的值,当一个表的读锁达到这个值后,MySQL就暂时将写请求的优先级降低,给读进程一定获得锁的机会。 上面已经讨论了写优先调度机制带来的问题和解决办法。这里还要强调一点:一些需要长时间运行的查询操作,也会使写进程“饿死”!因此,应用中应尽量避免出现长时间运行的查询操作,不要总想用一条SELECT语句来解决问题,因为这种看似巧妙的SQL语句,往往比较复杂,执行时间较长,在可能的情况下可以通过使用中间表等措施对SQL语句做一定的“分解”,使每一步查询都能在较短时间完成,从而减少锁冲突。如果复杂查询不可避免,应尽量安排在数据库空闲时段执行,比如一些定期统计可以安排在夜间执行。

InnoDB

InnoDB与MyISAM的最大不同有两点:一是支持事务(TRANSACTION);二是采用了行级锁。行级锁与表级锁本来就有许多不同之处,另外,事务的引入也带来了一些新问题。

事务概念

学习Spring的时候,一般通过注解 @Transitional 就能启动spring的事务管理,在MySQL中也同样支持事务的四个原则 ACID

  • **A(Atomicity)原子性:**事务是一个原子操作单元,其对数据的修改,要么全都执行,要么全都不执行。
  • **C(Consistent)一致性:**在事务开始和完成时,数据都必须保持一致状态。这意味着所有相关的数据规则都必须应用于事务的修改,以保持数据的完整性;事务结束时,所有的内部数据结构(如B树索引或双向链表)也都必须是正确的。
  • **I(Isolation)隔离性:**数据库系统提供一定的隔离机制,保证事务在不受外部并发操作影响的“独立”环境执行。这意味着事务处理过程中的中间状态对外部是不可见的,反之亦然。
  • **D(Durable)持久性:**事务完成之后,它对于数据的修改是永久性的,即使出现系统故障也能够保持。

并发事务处理带来的问题

相对于串行处理来说,并发事务处理能大大增加数据库资源的利用率,提高数据库系统的事务吞吐量,从而可以支持更多的用户。但并发事务处理也会带来一些问题,主要包括以下几种情况。

  • 更新丢失(Last update) :A和B同时对一行数据进行处理,A修改后进行保存,然后B修改后进行保存,这样A的更新被覆盖了,相当于发生丢失更新的问题。所以可以在A事务未结束前,B不能访问该记录,这样就能避免更新丢失的问题。
  • 脏读(Dirty Reads) :A事务在对一条记录做修改,但还未提交,这条记录处于不一致的状态;这时,B事务也来读同一条记录,这时如果没有加控制,B读了未修改前的数据,并根据该数据进行进一步处理,就会产生未提交的数据依赖关系。这种现象叫做“脏读”
  • 不可重复读(Non-Repeatable Reads) :B事务在读取某些数据后的某个时间,再次读取以前读过的数据,却发现其读出的数据已经发生了改变(被更新或者删除了,例如A事务修改了)。这种现象叫做“不可重复读”。
  • 幻读(Phantom Reads) :A事务按照相同查询条件,重新读取之前检索过得内容,却发现其它事务插入或修改其查询条件的新数据,这种现象就叫”幻读“。

事务的隔离级别

数据库的事务隔离越严格,并发副作用越小,但付出的代价也就越大,因为事务隔离实质上就是使事务在一定程度上 “串行化”进行,这显然与“并发”是矛盾的。同时,不同的应用对读一致性和事务隔离程度的要求也是不同的,比如许多应用对“不可重复读”和“幻读”并不敏感,可能更关心数据并发访问的能力。

4种隔离级别比较

读数据一致性及允许的并发副作用

隔离级别

读数据一致性 脏读 不可重复读 幻读
未提交读(Read uncommitted) 最低级别,只能保证不读取
物理上损害的数据
已提交读(Read committed) 语句级
可重复读(Repeatable read) 事务级
可序列化(Serializable) 最高级别,事务级

获取InnoDB行锁争用情况

检查InnoDB_row_lock状态变量来分析:

mysql> show status like 'InnoDB_row_lock%';
+-------------------------------+-------+
| Variable_name                 | Value |
+-------------------------------+-------+
| Innodb_row_lock_current_waits | 0     |
| Innodb_row_lock_time          | 0     |
| Innodb_row_lock_time_avg      | 0     |
| Innodb_row_lock_time_max      | 0     |
| Innodb_row_lock_waits         | 0     |
+-------------------------------+-------+
5 rows in set (0.00 sec)
复制代码

如果InnoDB_row_lock_waits和InnoDB_row_lock_time_avg的值比较高,表示锁争用情况比较严重。

InnoDB的行锁模式以及加锁方法

InnoDB实现了一下两种类型的行锁:

  • 共享锁(S):允许一个事务去多一行,阻止其它事务获得相同数据集的排他锁。
  • 排他锁(X): 允许获得排他锁的事务更新数据,阻止其它事务获得相同数据集的共享锁和排他写锁。

另外,为了允许行锁和表锁共存,实现多粒度锁机制, InnoDB还有两种内部使用的意向锁(Intention Locks),这两种意向锁都是表锁 。(感觉与MyISAM的表锁机制类似)

  • 意向共享锁(IS):事务打算给数据行加行共享锁,事务在给一个数据行加共享锁前必须先取得该表的IS锁。
  • 意向排他锁(IX):事务打算给数据行加行排他锁,事务在给一个数据行加排他锁前必须先取得该表的IX锁。

InnoDB行锁模式兼容性列表:

请求锁模式

矩阵结果表示是否兼容

当前锁模式

X IX S IS
X 冲突 冲突 冲突 冲突
IX 冲突 兼容 冲突 兼容
S 冲突 冲突 兼容 兼容
IS 冲突 兼容 兼容 兼容

如果一个事务请求的锁模式与当前的锁兼容,InnoDB就将请求的锁授予该事务;反之,如果两者不兼容,该事务就要等待锁释放。 意向锁是InnoDB自动加的;对于UPDATE、DELETE和INSERT语句,InnoDB会自动给设计数据集加排他锁(X);对于普通的SELECT语句,InnoDB不会加锁。 可以通过以下语句显示给记录集加共享锁或排他锁:

  • 共享锁(S):SELECT * FROM TABLE_NAME WHERE ... LOCK IN SHARE MODE.
  • 排他锁(X):SELECT * FROM TABLE_NAME WHERE ... FOR UPDATE.

用SELECT ... IN SHARE MODE获得共享锁,主要用在需要数据依存关系时来确认某行记录是否存在,并确保没有人对这个记录进行UPDATE或者DELETE操作。但是如果当前事务也需要对该记录进行更新操作,则很有可能造成死锁,对于锁定行记录后需要进行更新操作的应用,应该使用SELECT... FOR UPDATE方式获得排他锁。

所以在使用共享锁模式下,查询完数据后不要进行更新操作,不然又可能会造成死锁;要更新数据,应该使用排他锁模式。

InnoDB行锁实现方式

InnoDB行锁是通过 给索引上的索引项加锁来实现的 ,这一点MySQL与Oracle不同,后者是通过在数据块中对相应数据行加锁来实现的。InnoDB这种行锁实现特点意味着: 只有通过索引条件检索数据,InnoDB才使用行级锁,否则,InnoDB将使用表锁! (这个问题遇到过,由于没加索引,行锁变表锁)

  • 在不通过索引条件查询的时候,InnoDB确实使用的是表锁,而不是行锁。
  • 由于MySQL的行锁是针对索引加的锁,不是针对记录加的锁,所以虽然是访问不同行的记录,但是如果是使用相同的索引键,是会出现锁冲突的。
  • 当表有多个索引的时候,不同的事务可以使用不同的索引锁定不同的行,另外,不论是使用主键索引、唯一索引或普通索引,InnoDB都会使用行锁来对数据加锁。
  • 即便在条件中使用了索引字段,但是否使用索引来检索数据是由MySQL通过判断不同 执行计划 的代价来决定的,如果MySQL认为全表扫描效率更高,比如对一些很小的表,它就不会使用索引,这种情况下InnoDB将使用表锁,而不是行锁。

可以通过explain执行计划查看是否真正使用了索引。

间隙锁(Next-key锁)

当我们用范围条件而不是相等条件检索数据,并请求共享或排他锁时,InnoDB会给符合条件的已有数据记录的索引项加锁;对于键值在条件范围内但并不存在的记录,叫做“间隙(GAP)”,InnoDB也会对这个“间隙”加锁,这种锁机制就是所谓的间隙锁(Next-Key锁)。

举个:chestnut::

假如emp表中只有101条记录,其id的值从1~101,下面的sql: select * from emp where id > 100 for update; 是范围条件查询,InnoDB不仅会对符合条件的id值为101的记录加锁,也会对id大于101(并不存在的值)的“间隙”加锁。

结论:

很显然,在使用范围条件检索并锁定记录时,InnoDB这种加锁机制会阻塞符合条件范围内键值的并发插入,这往往会造成严重的锁等待。因此,在实际应用开发中,尤其是并发插入比较多的应用,我们要尽量优化业务逻辑,尽量使用相等条件来访问更新数据,避免使用范围条件。

关于死锁(DeadLock)

上面知识点说过,MyISAM表锁是deadlock free的,这是因为MyISAM总是一次获得所需的全部锁,要么全部满足,要么等待,因此不会出现死锁。但在InnoDB中,除单个SQL组成的事务外,锁是逐步或得的,所以InnoDB发生死锁是可能的。

举个:chestnut::

session A session B
mysql> set autocommit = 0;
Query OK, 0 rows affected (0.00 sec)
mysql> select * from table_1 where where id=1 for update;
...
做一些其他处理...
mysql> set autocommit = 0;
Query OK, 0 rows affected (0.00 sec)
mysql> select * from table_2 where id=1 for update;
...
select * from table_2 where id =1 for update;
因session_2已取得排他锁,等待
做一些其他处理...
mysql> select * from table_1 where where id=1 for update;
死锁

也就是我们死锁产生的条件,互相持有资源不释放,还有环形等待。

发生死锁后,InnoDB一般都能自动检测到,并使一个事务释放锁并回退,另一个事务获得锁,继续完成事务。但在涉及外部锁,或涉及表锁的情况下,InnoDB并不能完全自动检测到死锁,这需要通过 设置锁等待超时参数 innodb_lock_wait_timeout 来解决。需要说明的是,这个参数并不是只用来解决死锁问题,在并发访问比较高的情况下,如果大量事务因无法立即获得所需的锁而挂起,会占用大量计算机资源,造成严重性能问题,甚至拖跨数据库。我们通过设置合适的锁等待超时阈值,可以避免这种情况发生。


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

P3P Web隐私

P3P Web隐私

克劳娜著、技桥译 / 克劳娜 / 清华大学出版社 / 2004-5 / 45.0

自万维网络中出现商业站点以来,基于Web的商业需求和用户的隐私权利之间就存在着不断的斗争。Web开发者们需要收集有关用户的信息,但是他们也需要表示出对用户隐私的尊重。因此隐私偏好工程平台,或者称之为P3P,就作为满足双方利益的技术应运而生了。 P3P由万维网协会研制,它为Web用户提供了对自己公开信息的更多的控制。支持P3P的Web站点可以为浏览者声明他们的隐私策略。支持P3P的浏览......一起来看看 《P3P Web隐私》 这本书的介绍吧!

JS 压缩/解压工具
JS 压缩/解压工具

在线压缩/解压 JS 代码

CSS 压缩/解压工具
CSS 压缩/解压工具

在线压缩/解压 CSS 代码

HEX CMYK 转换工具
HEX CMYK 转换工具

HEX CMYK 互转工具