内容简介:同时提供每月大咖直播分享、真实项目需求对接、干货资讯汇总,行业技术交流*延伸阅读
加入极市 专业CV交流群,与 6000+来自腾讯,华为,百度,北大,清华,中科院 等名企名校视觉开发者互动交流!更有机会与 李开复老师 等大牛群内互动!
同时提供每月大咖直播分享、真实项目需求对接、干货资讯汇总,行业技术交流 。 点击文末“ 阅读原文 ”立刻申请入群~
本文转自公众号新智元
【导读】DeepMind提出一种全新的“深度压缩感知”框架,将压缩感知与深度学习相结合,显著提高了信号恢复的性能和速度,并提出一种改进GAN的新方法。
压缩感知(CS)是一种优雅的框架,用于从压缩信号中恢复稀疏信号。
例如,CS可以利用自然图像的结构,仅从少量的随机测量中恢复图像。
CS具有灵活性和数据效率高的优点,但由于其稀疏性和昂贵的重建过程,CS的应用受到限制。
那么,将CS与深度学习的思想相结合,是否能得到更优雅的框架呢?
近日,DeepMind的Yan Wu,Mihaela Rosca,Timothy Lillicrap等研究人员在ICML 2019发表论文 Deep Compressed Sensin g,基于前人将CS和神经网络生成器结合起来的方法,提出一个全新的框架。
深度压缩感知(DCS)框架通过 联合训练生成器 和通过 元学习优化重建过程 ,显著提高了信号恢复的性能和速度。作者探索了针对不同目标的测量训练,并给予最小化测量误差推导出一系列模型。
作者表示:“我们证明了,生成对抗网络(GANs)可以被视为这个模型家族中的一个特例。借鉴CS的思想,我们开发了一种使用来自鉴别器的梯度信息来改进GAN的新方法。”
压缩感知,一种优雅的框架
压缩感知是什么呢?
有人这样评价道:
压缩感知是信号处理领域进入 21 世纪以来取得的最耀眼的成果之一,并在磁共振成像、图像处理等领域取得了有效应用。压缩感知理论在其复杂的数学表述背后蕴含着非常精妙的思想。基于一个有想象力的思路,辅以严格的数学证明,压缩感知实现了神奇的效果,突破了信号处理领域的金科玉律 —— 奈奎斯特采样定律。即,在信号采样的过程中,用很少的采样点,实现了和全采样一样的效果。[1]
编码和解码是通信中的核心问题。压缩感知(CS)提供了将编码和解码分离为独立的测量和重建过程的框架。与常用的自动编码模型(具有端到端训练的编码器和解码器对)不同,CS通过在线优化从低维测量重建信号。
该模型架构具有高度的灵活性和采样效率: 高维信号可以从少量随机测量数据中重建,几乎不需要或根本不需要任何训练。
CS已经成功地应用于测量噪声大、成本高的场景,如MRI。它的采样效率使得诸如“单像素相机”的开发成为可能,可以从单个光传感器重全分辨率的图像。
然而,尤其是在现代深度学习方法蓬勃发展的大规模数据处理中,CS的广泛应用受到了它的稀疏信号假设和重建优化过程缓慢的阻碍。
最近,Bora et al. (2017)将CS与单独训练的神经网络生成器相结合。虽然这些预训练的神经网络没有针对CS进行优化,但它们表现出的重建性能优于现有的方法,如Lasso (Tibshirani, 1996)。
在本文中,我们提出一种 深度压缩感知框架(deep compressed sensing,DCS) ,在此框架中,神经网络可以从头开始训练,用于测量和在线重建。
我们证明, 深度压缩感知框架可以自然地生成一系列模型,包括GANs ,可以通过训练具有不同目标的测量函数推导得出。
这项工作的贡献如下:
-
我们展示了如何在CS框架下训练深度神经网络。
-
结果表明,与以往的模型相比,元学习重建方法具有更高的精度和快几个数量级的速度。
-
我们开发了一种新的基于潜在优化的GAN训练算法,提高了GAN的性能。
-
我们将这个新框架扩展到训练半监督GAN,并表明潜在优化会产生具有语义意义的潜在空间。
深度压缩感知:结合深度神经网络
我们首先展示了将元学习与Bora et al. (2017)的模型相结合的好处。然后将测量矩阵推广到参数化的测量函数,包括深度神经网络。
之前的工作依赖于 random projection作为测量函数,而我们的方法通过将RIP作为训练目标来学习测量函数。然后,我们通过在测量上添加RIP之外的其他特性,得到了两个新的模型,包括一个带有鉴别器引导的潜在优化的GAN模型,这导致了更稳定的训练动态和更好的结果。
压缩感知与元学习
我们假设CSGM(Bora et al. 2017)的运行时效率和性能可以通过使用元学习训练潜在的优化过程、通过梯度下降步骤的反向传播来提高。
CS模型的潜在优化过程可能需要数百个或数千个梯度下降步骤。通过使用元学习来优化这个优化过程,我们的目标是用更少的更新来实现类似的结果。
为此,我们训练模型参数,以及潜在的优化程序,以尽量减低预期的测量误差:
我们的算法如下:
算法1:元学习压缩感知
具有学习测量函数的深度压缩感知
在算法1中,我们使用RIP属性来训练生成器。我们可以使用相同的方法,并加强RIP属性来学习测量函数F本身,而不是使用random projection。
下面的算法2总结了这个扩展算法。我们称之为深度压缩感知(DCS) ,以强调测量和重建可以是深度神经网络。
算法2:深度压缩感知
实验和结果
表2和表3总结了我们的模型以及Bora等人的基准模型的结果。
表2:使用不同测量函数的MNIST测试数据的重建损失。除了第一行之外,所有行都来自我们的模型。“±”表示测试样本间的标准差。(L)表示习得的测量函数,越低越好。
表3:使用不同测量函数的CelebA测试数据的重建损失。除了第一行之外,所有行都来自我们的模型。“±”表示测试样本间的标准差。(L)表示习得的测量函数,越低越好。
可以看到,DCS的性能明显优于基准。此外,虽然基线模型使用了数千个梯度下降步骤,并且多次重启,但是我们只使用了3个步骤,没有重启,大幅提高了效率。
有趣的是,对于固定的函数F,随机线性投影的表现优于神经网络。这个实证结果符合压缩感知文献中描述的随机投影的最优性,以及更通用的Johnson-Lindenstrauss定理。
更多结果如下:
表4:与 Spectral Normalised GANs的比较。
图2:利用随机线性投影(上)、训练线性投影(中)和训练神经网络(下)的10个测量的重建。
图3:使用0(左)、3(中)和5(右)个梯度下降步骤进行潜在优化的CS-GAN样本。采用0步骤的CS-GAN相当于原始GAN。
图4:在CIFAR训练期间的Inception Score(越高越好)和FID分数(越低越好)。
论文地址:
https://arxiv.org/pdf/1905.06723.pdf
参考:
[1]形象易懂讲解算法 II—— 压缩感知
https://zhuanlan.zhihu.com/p/22445302
*延伸阅读
点击左下角 “ 阅读原文 ”, 即可申请加入极市 目标跟踪、目标检测、工业检测、人脸方向、视觉竞赛等技术交流群, 更有每月大咖直播分享、真实项目需求对接、干货资讯汇总,行业技术交流, 一起来让思想之光照的更远吧~
觉得有用麻烦给个在看啦~
以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网
猜你喜欢:本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
Paradigms of Artificial Intelligence Programming
Peter Norvig / Morgan Kaufmann / 1991-10-01 / USD 77.95
Paradigms of AI Programming is the first text to teach advanced Common Lisp techniques in the context of building major AI systems. By reconstructing authentic, complex AI programs using state-of-the-......一起来看看 《Paradigms of Artificial Intelligence Programming》 这本书的介绍吧!