内容简介:Flink 可以运行在 Linux, Max OS X, 或者是 Windows 上。为了开发 Flink 应用程序,在本地机器上需要有如果有 Java 8 环境,运行下面的命令会输出如下版本信息:我们将使用Flink Maven Archetype 来创建我们的项目结构和一些初始的默认依赖。在你的工作目录下,运行如下命令来创建项目:
Flink 可以运行在 Linux, Max OS X, 或者是 Windows 上。为了开发 Flink 应用程序,在本地机器上需要有 Java 8.x 和 maven 环境。
如果有 Java 8 环境,运行下面的命令会输出如下版本信息:
$ java -version java version "1.8.0_65" Java(TM) SE Runtime Environment (build 1.8.0_65-b17) Java HotSpot(TM) 64-Bit Server VM (build 25.65-b01, mixed mode) 如果有 maven 环境,运行下面的命令会输出如下版本信息: $ mvn -version Apache Maven 3.5.4 (1edded0938998edf8bf061f1ceb3cfdeccf443fe; 2018-06-18T02:33:14+08:00) Maven home: /Users/wuchong/dev/maven Java version: 1.8.0_65, vendor: Oracle Corporation, runtime: /Library/Java/JavaVirtualMachines/jdk1.8.0_65.jdk/Contents/Home/jre Default locale: zh_CN, platform encoding: UTF-8 OS name: "mac os x", version: "10.13.6", arch: "x86_64", family: "mac" 另外我们推荐使用 ItelliJ IDEA (社区免费版已够用)作为 Flink 应用程序的开发 IDE。Eclipse 虽然也可以,但是 Eclipse 在 Scala 和 Java 混合型项目下会有些已知问题,所以不太推荐 Eclipse。下一章节,我们会介绍如何创建一个 Flink 工程并将其导入 ItelliJ IDEA。 复制代码
创建 Maven 项目
我们将使用Flink Maven Archetype 来创建我们的项目结构和一些初始的默认依赖。在你的工作目录下,运行如下命令来创建项目:
mvn archetype:generate \ -DarchetypeGroupId=org.apache.flink \ -DarchetypeArtifactId=flink-quickstart-java \ -DarchetypeVersion=1.6.1 \ -DgroupId=my-flink-project \ -DartifactId=my-flink-project \ -Dversion=0.1 \ -Dpackage=myflink \ -DinteractiveMode=false 复制代码
你可以编辑上面的 groupId, artifactId, package 成你喜欢的路径。使用上面的参数,Maven 将自动为你创建如下所示的项目结构:
$ tree my-flink-project my-flink-project ├── pom.xml └── src └── main ├── java │ └── myflink │ ├── BatchJob.java │ └── StreamingJob.java └── resources └── log4j.properties 复制代码
我们的 pom.xml 文件已经包含了所需的 Flink 依赖,并且在 src/main/java 下有几个示例程序框架。接下来我们将开始编写第一个 Flink 程序。
编写 Flink 程序
启动 IntelliJ IDEA,选择 "Import Project"(导入项目),选择 my-flink-project 根目录下的 pom.xml。根据引导,完成项目导入。
在 src/main/java/myflink 下创建 SocketWindowWordCount.java
文件:
package myflink; public class SocketWindowWordCount { public static void main(String[] args) throws Exception { } } 复制代码
现在这程序还很基础,我们会一步步往里面填代码。注意下文中我们不会将 import 语句也写出来,因为 IDE会自动将他们添加上去。在本节末尾,我会将完整的代码展示出来,如果你想跳过下面的步骤,可以直接将最后的完整代码粘到编辑器中。
Flink 程序的第一步是创建一个 StreamExecutionEnvironment
。这是一个入口类,可以用来设置参数和创建数据源以及提交任务。所以让我们把它添加到 main 函数中:
StreamExecutionEnvironment see = StreamExecutionEnvironment.getExecutionEnvironment(); 复制代码
下一步我们将创建一个从本地端口号 9000 的 socket 中读取数据的数据源:
DataStream<String> text = env.socketTextStream("localhost", 9000, "\n"); 复制代码
这创建了一个字符串类型的 DataStream
。 DataStream
是 Flink 中做流处理的核心 API,上面定义了非常多常见的操作(如,过滤、转换、聚合、窗口、关联等)。在本示例中,我们感兴趣的是每个单词在特定时间窗口中出现的次数,比如说5秒窗口。为此,我们首先要将字符串数据解析成单词和次数(使用 Tuple2<String, Integer>
表示),第一个字段是单词,第二个字段是次数,次数初始值都设置成了1。我们实现了一个 flatmap
,因为一行数据中可能有多个单词。
DataStream<Tuple2<String, Integer>> wordCounts = text .flatMap(new FlatMapFunction<String, Tuple2<String, Integer>>() { @Override public void flatMap(String value, Collector<Tuple2<String, Integer>> out) { for (String word : value.split("\\s")) { out.collect(Tuple2.of(word, 1)); } } }); 复制代码
接着我们将数据流按照单词字段(即0号索引字段)做分组,这里可以简单地使用 keyBy(int index)
方法,得到一个以单词为 key 的 Tuple2<String, Integer>
数据流。然后我们可以在流上指定想要的窗口,并根据窗口中的数据计算结果。在我们的例子中,我们想要每5秒聚合一次单词数,每个窗口都是从零开始统计的。
DataStream<Tuple2<String, Integer>> windowCounts = wordCounts .keyBy(0) .timeWindow(Time.seconds(5)) .sum(1); 复制代码
第二个调用的 .timeWindow()
指定我们想要5秒的翻滚窗口(Tumble)。第三个调用为每个key每个窗口指定了 sum
聚合函数,在我们的例子中是按照次数字段(即1号索引字段)相加。得到的结果数据流,将每5秒输出一次这5秒内每个单词出现的次数。
最后一件事就是将数据流打印到控制台,并开始执行:
windowCounts.print().setParallelism(1); env.execute("Socket Window WordCount"); 复制代码
最后的 env.execute
调用是启动实际Flink作业所必需的。所有算子操作(例如创建源、聚合、打印)只是构建了内部算子操作的图形。只有在execute()被调用时才会在提交到集群上或本地计算机上执行。
下面是完整的代码,部分代码经过简化(代码在 GitHub 上也能访问到):
package myflink; import org.apache.flink.api.common.functions.FlatMapFunction; import org.apache.flink.api.java.tuple.Tuple2; import org.apache.flink.streaming.api.datastream.DataStream; import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; import org.apache.flink.streaming.api.windowing.time.Time; import org.apache.flink.util.Collector; public class SocketWindowWordCount { public static void main(String[] args) throws Exception { // 创建 execution environment final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); // 通过连接 socket 获取输入数据,这里连接到本地9000端口,如果9000端口已被占用,请换一个端口 DataStream<String> text = env.socketTextStream("localhost", 9000, "\n"); // 解析数据,按 word 分组,开窗,聚合 DataStream<Tuple2<String, Integer>> windowCounts = text .flatMap(new FlatMapFunction<String, Tuple2<String, Integer>>() { @Override public void flatMap(String value, Collector<Tuple2<String, Integer>> out) { for (String word : value.split("\\s")) { out.collect(Tuple2.of(word, 1)); } } }) .keyBy(0) .timeWindow(Time.seconds(5)) .sum(1); // 将结果打印到控制台,注意这里使用的是单线程打印,而非多线程 windowCounts.print().setParallelism(1); env.execute("Socket Window WordCount"); } } 复制代码
运行程序
要运行示例程序,首先我们在终端启动 netcat 获得输入流:
nc -lk 9000 复制代码
如果是 Windows 平台,可以通过nmap.org/ncat/ 安装 ncat 然后运行:
ncat -lk 9000 复制代码
然后直接运行 SocketWindowWordCount
的 main 方法。
只需要在 netcat 控制台输入单词,就能在 SocketWindowWordCount
的输出控制台看到每个单词的词频统计。如果想看到大于1的计数,请在5秒内反复键入相同的单词。
Cheers ! :tada:
- The End-
Apache Flink 入门教程 将长期连载更新,除文章外,社区每周也通过直播的形式系统输出 Apache Flink 从基础、进阶、运维、实战四个部分的内容。
进阶课程 主题:《Flink Time 深度解析》 讲师:崔星灿(Apache Flink Committer,加拿大约克大学博士后) 直播:5月21日 20:00-21:00 周二晚上20:00,Apache Flink China社区大群(钉钉群号:21789141)一起围观崔老师关于 Flink Time 的深度解析,往期直播视频请点击回顾
以上所述就是小编给大家介绍的《入门教程 | 5分钟从零构建第一个 Flink 应用》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!
猜你喜欢:本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
Hacker's Delight
Henry S. Warren Jr. / Addison-Wesley / 2002-7-27 / USD 59.99
A collection useful programming advice the author has collected over the years; small algorithms that make the programmer's task easier. * At long last, proven short-cuts to mastering difficult aspec......一起来看看 《Hacker's Delight》 这本书的介绍吧!