清华大学和京东发表于KDD 2019的全新强化学习框架FeedRec

栏目: 数据库 · 发布时间: 5年前

内容简介:KDD 2019 包括两个 track:Research track 和 Applied Data Science track。今年的 KDD Research track 共评审约 1200 篇投稿,其中约 110 篇 oral 论文,60 篇 poster 论文,接收率约 14%,比往年的 17%~18% 还要下降了近 4 个百分点。此前 3 年 KDD Research track 的录用情况分别是:投稿 983 篇,收录 178 篇(2018);投稿748 篇,收录 130 篇(2017);投稿 7

清华大学和京东发表于KDD 2019的全新强化学习框架FeedRec

KDD 2019 包括两个 track:Research track 和 Applied Data Science track。

今年的 KDD Research track 共评审约 1200 篇投稿,其中约 110 篇 oral 论文,60 篇 poster 论文,接收率约 14%,比往年的 17%~18% 还要下降了近 4 个百分点。此前 3 年 KDD Research track 的录用情况分别是:投稿 983 篇,收录 178 篇(2018);投稿748 篇,收录 130 篇(2017);投稿 784篇,收录142 篇(2016)。

而此次 ADS track 约投稿 700 篇,其中 45 篇 oral 论文,100 篇 poster 论文。

学术君今天为大家推荐的是清华大学和京东发表于KDD 2019的工作。

  • 论文题目

    Reinforcement Learning to Optimize Long-term User Engagement in Recommender Systems

  • 作者

    Lixin Zou, Long Xia, Zhuoye Ding, Jiaxing Song, Weidong Liu, Dawei Yin

  • 会议/年份

    KDD 2019

  • 链接

    http://export.arxiv.org/abs/1902.05570

  • Abstract

    Recommender systems play a crucial role in our daily lives. Feed streaming mechanism has been widely used in the recommender system, especially on the mobile Apps. The feed streaming setting provides users the interactive manner of recommendation in never-ending feeds. In such an interactive manner, a good recommender system should pay more attention to user stickiness, which is far beyond classical instant metrics, and typically measured by {\bf long-term user engagement}. Directly optimizing the long-term user engagement is a non-trivial problem, as the learning target is usually not available for conventional supervised learning methods. Though reinforcement learning~(RL) naturally fits the problem of maximizing the long term rewards, applying RL to optimize long-term user engagement is still facing challenges: user behaviors are versatile and difficult to model, which typically consists of both instant feedback~(\eg clicks, ordering) and delayed feedback~(\eg dwell time, revisit); in addition, performing effective off-policy learning is still immature, especially when combining bootstrapping and function approximation.

    To address these issues, in this work, we introduce a reinforcement learning framework --- FeedRec to optimize the long-term user engagement. FeedRec includes two components: 1)~a Q-Network which designed in hierarchical LSTM takes charge of modeling complex user behaviors, and 2)~an S-Network, which simulates the environment, assists the Q-Network and voids the instability of convergence in policy learning. Extensive experiments on synthetic data and a real-world large scale data show that FeedRec effectively optimizes the long-term user engagement and outperforms state-of-the-arts.

    推荐理由

    本文是清华大学和京东发表于 KDD 2019 的工作。论文针对利用强化学习解决推荐系统时存在用户行为难以建模的问题,提出了一种新的强化学习框架 FeedRec,包括两个网络:Q 网络利用层次化 LSTM 对复杂用户行为建模,S 网络用来模拟环境,辅助和稳定 Q 网络的训练。方法在合成数据和真实数据上进行了验证,取得了 SOTA 的结果。 清华大学和京东发表于KDD 2019的全新强化学习框架FeedRec

清华大学和京东发表于KDD 2019的全新强化学习框架FeedRec

清华大学和京东发表于KDD 2019的全新强化学习框架FeedRec

清华大学和京东发表于KDD 2019的全新强化学习框架FeedRec

清华大学和京东发表于KDD 2019的全新强化学习框架FeedRec 传送门:

论文地址:

http://export.arxiv.org/pdf/1902.05570


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

从问题到程序

从问题到程序

裘宗燕 / 机械工业出版社 / 2005-9-1 / 36.00元

本书以C作为讨论程序设计的语言,讨论了基本程序设计的各方面问题。书中给出程序实例时没有采用常见的提出问题,给出解答,再加些解释的简单三步形式,而是增加了许多问题的分析和讨论,以帮助读者认识程序设计过程的实质,理解从问题到程序的思考过程。书中还尽可能详尽地解释了许多与C语言和程序设计有关的问题。 本书适合作为高等院校计算机及相关专业的教材,也可供其他学习C程序设计语言的读者阅读。一起来看看 《从问题到程序》 这本书的介绍吧!

Base64 编码/解码
Base64 编码/解码

Base64 编码/解码

Markdown 在线编辑器
Markdown 在线编辑器

Markdown 在线编辑器

正则表达式在线测试
正则表达式在线测试

正则表达式在线测试