玩转Facebook的maskrcnn-benchmark项目 2

栏目: 编程工具 · 发布时间: 6年前

内容简介:本系列包含两篇:使用maskrcnn-benchmark训练模型,可以

maskrcnn-benchmark 是Facebook开源的基准(benchmark)算法工程,其中包含 检测分割人体关键点 等算法。

本系列包含两篇:

  • 第一篇搭建环境;
  • 第二篇训练和验证;

训练

使用maskrcnn-benchmark训练模型,可以 参考

数据集:

  • 下载完整的COCO数据集:annotations、test2014、train2014、val2014;
  • 下载FAIR提供的 COCO小型验证集 :minival和valminusminival;

选择训练模板: e2e_mask_rcnn_R_50_FPN_1x.yaml ,其中:

WEIGHT: "catalog://ImageNetPretrained/MSRA/R-50"  # 预训练权重
DATASETS:  # 数据集
  TRAIN: ("coco_2014_train", "coco_2014_valminusminival")
  TEST: ("coco_2014_minival",)
MAX_ITER: 90000  # 最大训练轮次
复制代码

其他参数的设置位置: maskrcnn_benchmark/config/defaults.py

如:

  • _C.SOLVER.CHECKPOINT_PERIOD = 2500 ,保存轮次;
  • _C.SOLVER.IMS_PER_BATCH = 16 ,训练的 batch_size
  • _C.OUTPUT_DIR = "./models" ,模型输出路径;

指定GPU的数量:

export NGPUS=4
复制代码

训练模型:

python -m torch.distributed.launch --nproc_per_node=$NGPUS tools/train_net.py --config-file "configs/e2e_mask_rcnn_R_50_FPN_1x.yaml"

nohup python -u -m torch.distributed.launch --nproc_per_node=$NGPUS tools/train_net.py --config-file "configs/e2e_mask_rcnn_R_50_FPN_1x.yaml" &
复制代码

输出的模型位于 ./models 中,最后一个模型是 model_0090000.pth


以上所述就是小编给大家介绍的《玩转Facebook的maskrcnn-benchmark项目 2》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

谷歌和亚马逊如何做产品

谷歌和亚马逊如何做产品

梅 (Chris Vander Mey) / 刘亦舟 / 人民邮电出版社 / 2014-6-1 / CNY 49.00

软件在交付之前,面临产品、方案、项目和工程管理等诸多挑战,如何做到游刃有余并打造出极致产品?本书作者曾任谷歌和亚马逊高级产品经理、现任Facebook产品经理,他将自己在达特茅斯学院钻研的理论知识和在领先的互联网公司十年的工作经验尽数总结在此,从定义产品开始,一步步指导你完成管理项目、迭代、发布、市场推广等交付流程,让你身临其境地体验到极致产品如何取得成功。 本书主要内容: 如何清晰定......一起来看看 《谷歌和亚马逊如何做产品》 这本书的介绍吧!

RGB转16进制工具
RGB转16进制工具

RGB HEX 互转工具

XML、JSON 在线转换
XML、JSON 在线转换

在线XML、JSON转换工具

HSV CMYK 转换工具
HSV CMYK 转换工具

HSV CMYK互换工具