玩转Facebook的maskrcnn-benchmark项目 2

栏目: 编程工具 · 发布时间: 5年前

内容简介:本系列包含两篇:使用maskrcnn-benchmark训练模型,可以

maskrcnn-benchmark 是Facebook开源的基准(benchmark)算法工程,其中包含 检测分割人体关键点 等算法。

本系列包含两篇:

  • 第一篇搭建环境;
  • 第二篇训练和验证;

训练

使用maskrcnn-benchmark训练模型,可以 参考

数据集:

  • 下载完整的COCO数据集:annotations、test2014、train2014、val2014;
  • 下载FAIR提供的 COCO小型验证集 :minival和valminusminival;

选择训练模板: e2e_mask_rcnn_R_50_FPN_1x.yaml ,其中:

WEIGHT: "catalog://ImageNetPretrained/MSRA/R-50"  # 预训练权重
DATASETS:  # 数据集
  TRAIN: ("coco_2014_train", "coco_2014_valminusminival")
  TEST: ("coco_2014_minival",)
MAX_ITER: 90000  # 最大训练轮次
复制代码

其他参数的设置位置: maskrcnn_benchmark/config/defaults.py

如:

  • _C.SOLVER.CHECKPOINT_PERIOD = 2500 ,保存轮次;
  • _C.SOLVER.IMS_PER_BATCH = 16 ,训练的 batch_size
  • _C.OUTPUT_DIR = "./models" ,模型输出路径;

指定GPU的数量:

export NGPUS=4
复制代码

训练模型:

python -m torch.distributed.launch --nproc_per_node=$NGPUS tools/train_net.py --config-file "configs/e2e_mask_rcnn_R_50_FPN_1x.yaml"

nohup python -u -m torch.distributed.launch --nproc_per_node=$NGPUS tools/train_net.py --config-file "configs/e2e_mask_rcnn_R_50_FPN_1x.yaml" &
复制代码

输出的模型位于 ./models 中,最后一个模型是 model_0090000.pth


以上所述就是小编给大家介绍的《玩转Facebook的maskrcnn-benchmark项目 2》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

软件预构艺术(中文版)

软件预构艺术(中文版)

Ken Pugh / O'Reilly Taiwan公司 / 东南大学 / 2010-6 / 26.00元

利用经验累积而得到的洞察力开发新的解决方案被称为预构。透过重构而获得的专业知识也属于这类经验,而预构的词源即重构。重构是修改程序或软件系统内部结构的实践,以此在保留其现有行为的基础上改良设计。重构的原因有多种:方便后期增加功能、提高可维护性、提升性能。 本书作者是经验老道的软件开发人员。书中,作者运用他个人和其他众多开发人员的丰富经验,展示由其推衍而得的各项实践方针。这些方针把优秀的开发人员......一起来看看 《软件预构艺术(中文版)》 这本书的介绍吧!

MD5 加密
MD5 加密

MD5 加密工具

Markdown 在线编辑器
Markdown 在线编辑器

Markdown 在线编辑器

RGB HSV 转换
RGB HSV 转换

RGB HSV 互转工具