内容简介:Zookeeper 我想大家都不陌生,在很多场合都听到它的名字。它是 Apache 的一个顶级项目,为分布式应用提供一致性高性能协调服务。可以用来做:配置维护、域名服务、分布式锁等。有很多开源组件,尤其是中间件领域,使用 Zookeeper 作为配置中心或者注册中心。例如,它是 Hadoop 和 HBase 的重要组件,是 Kafka 的管理和协调服务,是 Dubbo 等服务框架的注册中心等。本文不探讨它的优缺点,仅着眼于如何对 Zookeeper 进行高可用部署。在介绍高可用部署前,我们先了解下 Zook
点击上方" 涤生的博客 ",关注我
转载请注明原创出处,谢谢! 如果读完觉得有收获的话,欢迎点赞加关注。
介绍
Zookeeper 我想大家都不陌生,在很多场合都听到它的名字。它是 Apache 的一个顶级项目,为分布式应用提供一致性高性能协调服务。可以用来做:配置维护、域名服务、分布式锁等。有很多开源组件,尤其是中间件领域,使用 Zookeeper 作为配置中心或者注册中心。例如,它是 Hadoop 和 HBase 的重要组件,是 Kafka 的管理和协调服务,是 Dubbo 等服务框架的注册中心等。
本文不探讨它的优缺点,仅着眼于如何对 Zookeeper 进行高可用部署。
原理
在介绍高可用部署前,我们先了解下 Zookeeper 的基本知识,这对充分理解它的高可用部署非常重要。
架构
下图是 Zookeeper 的架构图,ZooKeeper 集群中包含 Leader、Follower 以及 Observer 三个角色:
-
Leader:负责进行投票的发起和决议,更新系统状态,Leader 是由选举产生;
-
Follower: 用于接受客户端请求并向客户端返回结果,在选主过程中参与投票;
-
Observer:可以接受客户端连接,接受读写请求,写请求转发给 Leader,但 Observer 不参加投票过程,只同步 Leader 的状态,Observer 的目的是为了扩展系统,提高读取速度。
Client 是 Zookeeper 的客户端,请求发起方。
高可用
Zookeeper 系统中只要集群中存在超过一半的节点(这里指的是投票节点即非 Observer 节点)能够正常工作,那么整个集群就能够正常对外服务
基于此,如果想搭建一个能够允许 N 台机器 down 掉的集群,那么就要部署一个由 2*N+1 台服务器构成的 ZooKeeper 集群。 因此,如果部署了 3 个 Zookeeper 节点(非 Observer),则如果至少有 2个节点可用则整个集群就可用,意味着 1 个节点故障,不影响 Zookeeper 集群对外提供服务;如果部署了 5 个节点,意味着 2 个节点同时故障,Zookeeper 集群依然能够正常对外提供服务。
Zookeeper 集群部署的节点(非 Observer)数一般为奇数个
部署的节点数一般为奇数个,这里不是说不能为偶数个。例如如果部署了 4 个节点,这意味着需要 4/2+1 = 3 个节点正常,集群才能正常对外服务,即可以容忍 1 个节点故障,但是这个部署 3 个节点,其实效果是一样的,也就是说部署偶数个,从高可用方面来说只是浪费了 1 台机器而已。
部署
既然只要 Zookeeper 集群中存在超过一半的节点能够正常工作,集群就能够正常服务,那 Zookeeper 如果想要 Zookeeper 高可用岂不是很简单,是不是多部署几个节点不就好了呢?
多部署节点就高可用了?
多部署节点,貌似确实是能够增强可用性,但是这里还需要考虑以下两个问题:
-
多增加节点对性能和写可用性有影响 增加节点,意味了能够容忍非正常节点数更多,听起来高可用是更高了。但是,节点数越多意味着 Leader 发出的提案需要更多的节点(半数以上)来接受提案,这必然增加提案 commit 的耗时,也就意味着对写请求的性能以及可用性影响比较大。因此,对于正常的业务系统来说需要完美的权衡利弊,来调整节点的个数。
-
需要考虑容灾需求 部署还得结合容灾要求,需要能在机房故障,地区故障时整个 Zookeeper 集群是否能正常对外提供服务。
机房容灾
如果要保证在整个机房出现故障的情况下,保证 Zookeeper 集群的高可用,是要对 Zookeeper 做跨机房部署的。
单机房
我们先看下单机房部署情况下,下图是单个机房 5 个节点的部署情况。在单机房部署的情况下是不能做到机房容灾的,一旦机房出现问题,整个 Zookeeper 集群就不能对外工作。 单机房部署还需考虑所选的节点应该尽量不在同一个宿主机,不同机柜,避免多个节点同时出现问题。
同城双机房
既然单机房做不到机房容灾,那双机房呢? 如下图在“机房 1”部署 3 个节点,“机房 2”部署 2 个节点,总共 5 个节点的 Zookeeper 集群,这能做到机房容灾吗?任意一个机房故障,集群都能正常对外提供工作吗? 其实,还是不行的。假如“机房 2”故障,“机房 1”正常,这种情况下,因为“机房 1”存在 3 个节点,大于半数,因此还是能够正常工作的;但是,假如“机房 1”故障,那存活节点数只有 2 个,整个集群是不能正常工作的。 因此,Zookeeper 双机房部署,是不能够做到机房容灾的。
同城三机房
我们再来看看三机房部署,三机房部署,是能够做到机房容灾的。还是以 5 个节点的集群为例: 如下图,在“机房 1”、“机房 2”同时部署 2 个节点,而“机房 3” 部署 1 个节点。在任意一个机房故障的情况下,都能满足正常节点数大于半数及以上,所以能够保证机房容灾。
异地容灾
仅仅做到机房级别的容灾,对于一般的业务应该就够了,不过目前很多公司采用的是两地三中心模式,蚂蚁金服甚至做到了三地五中心。在这种情况下,我们的 Zookeeper 集群应该如何部署呢?
两地三中心
“两地三中心”即生产数据中心、同城灾备中心、异地灾备中心建设方案。这种模式下,两个城市的三个数据中心互联互通,如果一个数据中心发生故障或灾难,其他数据中心可以正常运行并对关键业务或全部业务实现接管。
在两地三中心的的模式下,Zookeeper 集群的部署有哪些考量呢? 如下图,一般两地三中心采用的是下面这种部署方式。在“地区 1”有两个同城数据中心,“中心 1”和“中心2”,在异地“地区 2” 有一个异地中心“中心 1”。这里你可能有两个疑问:
-
为什么投票节点(Follower 和 Leader)都放在“地区 1 中心 1”,而不是按照三机房类似的方案在三个中心都进行部署呢?
这里是因为由于异地之间的物理距离比较长,网络传输时延比较大,导致集群的投票节点的决策时间比较长,进而影响写性能。试想一下,如果两地选用的是北京和上海两座城市,走专线网络延时约 30ms,在写数据时,需要半数节点同意提案,一个写请求才能成功。因此,一次写成功的时间会比较长。 另外,异地之间的网络比较复杂,很容易出现集群重新选举,导致整个集群不可用,而且选举时间会比较长。 因此,一般只在一个中心内做到三机房部署,其他中心都是用 Observer 节点,可以看出,部署上 Zookeeper 集群无法做到异地容灾的。
-
为什么引入了 Observer 节点?
Observer 能很好的对 Zookeeper 集群进行扩展,Observer 可以提供 Client 读写,但不参与投票。因此,Observer 节点对集群不影响投票耗时,也不影响集群选举。另外,加入 Observer 对读性能是一个很大的提升。
三中心优化
为了保护集群,在三个中心都部署上 Observer 节点,而 Client 只与 Observer 机点进行交互,用这种方式可以降低投票节点的工作负载,降低 Leader 和 Follower 的不稳定性,从而提高整个集群的稳定性和可用性。
总结
Zookeeper 的高可用在部署上也是有很多考量的,Zookeeper 集群在部署上可以做到机房容灾,但是做不到异地容灾。另外,为了提升集群的扩展性和稳定性,可以引入 Observer 节点,提升读性能,保护 Leader 与 Follower 节点。
喜欢本文的朋友们,欢迎长按下图关注订阅号 涤生的博客 ,收看更多精彩内容
往
以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网
猜你喜欢:- docker部署rabbitmq集群
- 部署Ceph集群--jluocc
- 部署高可用Kubernetes集群
- Eureka使用及集群部署
- 使用Docker部署RabbitMQ集群
- GreenPlum 5.10.0 集群部署
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
Reversing
艾拉姆(Eilam,E.) / 韩琪、杨艳、王玉英、李娜 / 电子工业出版社 / 2007-9 / 79.00元
本书描述的是在逆向与反逆向之间展开的一场旷日持久的拉锯战。作者Eldad Eilam以一个解说人的身份为我们详尽地评述了双方使用的每一招每一式的优点与不足。 书中包含的主要内容有:操作系统的逆向工程;.NET平台上的逆向工程;逆向未公开的文件格式和网络协议;逆向工程的合法性问题;拷贝保护和数字版权管理技术的逆向工程;防止别人对你的代码实施逆向工程的各种技术;恶意程序的逆向工程;反编译器的基本......一起来看看 《Reversing》 这本书的介绍吧!