解密JavaScript执行上下文

栏目: JavaScript · 发布时间: 5年前

内容简介:首先我们先了解一下什么是执行上下文栈(Execution context stack)。上面这张图来自于mdn,分别展示了栈、堆和队列,其中栈就是我们所说的执行上下文栈;堆是用于存储对象这种复杂类型,我们复制对象的地址引用就是这个堆内存的地址;队列就是异步队列,用于event loop的执行。

执行上下文栈

首先我们先了解一下什么是执行上下文栈(Execution context stack)。

解密JavaScript执行上下文

上面这张图来自于mdn,分别展示了栈、堆和队列,其中栈就是我们所说的执行上下文栈;堆是用于存储对象这种复杂类型,我们复制对象的地址引用就是这个堆内存的地址;队列就是异步队列,用于event loop的执行。

JS代码在引擎中是以“一段一段”的方式来分析执行的,而并非一行一行来分析执行。而这“一段一段”的可执行代码无非为三种: Global codeFunction CodeEval code 。这些可执行代码在执行的时候又会创建一个一个的执行上下文(Execution context)。例如,当执行到一个函数的时候,JS引擎会做一些“准备工作”,而这个“准备工作”,我们称其为 执行上下文

那么随着我们的执行上下文数量的增加,JS引擎又如何去管理这些执行上下文呢?这时便有了执行上下文栈。

这里我用一段贯穿全文的例子来讲解执行上下文栈的执行过程:

var scope = 'global scope';

function checkscope(s) {
  var scope = 'local scope';

  function f() {
    return scope;
  }
  return f();
}
checkscope('scope');

当JS引擎去解析代码的时候,最先碰到的就是 Global code ,所以一开始初始化的时候便会将全局上下文推入执行上下文栈,并且只有在整个应用程序执行完毕的时候,全局上下文才会推出执行上下文栈。

这里我们用ECS来模拟执行上下文栈,用globalContext来表示全局上下文:

ESC = [
  globalContext, // 一开始只有全局上下文
]

然后当代码执行checkscope函数的时候,会创建checkscope函数的执行上下文,并将其压入执行上下文栈:

ESC = [
  checkscopeContext, // checkscopeContext入栈
  globalContext,
]

接着代码执行到 return f() 的时候,f函数的执行上下文被创建:

ESC = [
  fContext, // fContext入栈
  checkscopeContext,
  globalContext,
]

f函数执行完毕后,f函数的执行上下文出栈,随后checkscope函数执行完毕,checkscope函数的执行上下文出栈:

// fContext出栈
ESC = [
  // fContext出栈
  checkscopeContext,
  globalContext,
]

// checkscopeContext出栈
ESC = [
  // checkscopeContext出栈
  globalContext,
]

变量对象

每一个执行上下文都有三个重要的属性:

  • 变量对象
  • 作用域链
  • this

这一节我们先来说一下变量对象(Variable object,这里简称VO)。

变量对象是与执行上下文相关的数据作用域,存储了在上下文中定义的变量和函数声明。并且不同的执行上下文也有着不同的变量对象,这里分为全局上下文中的变量对象和函数执行上下文中的变量对象。

全局上下文中的变量对象

全局上下文中的变量对象其实就是全局对象。我们可以通过this来访问全局对象,并且在浏览器环境中, this === window ;在node环境中, this === global

解密JavaScript执行上下文

解密JavaScript执行上下文

函数上下文中的变量对象

在函数上下文中的变量对象,我们用活动对象来表示(activation object,这里简称AO),为什么称其为活动对象呢,因为只有到当进入一个执行上下文中,这个执行上下文的变量对象才会被激活,并且只有被激活的变量对象,其属性才能被访问。

在函数执行之前,会为当前函数创建执行上下文,并且在此时,会创建变量对象:

  • 根据函数arguments属性初始化arguments对象;
  • 根据函数声明生成对应的属性,其值为一个指向内存中函数的引用指针。如果函数名称已存在,则覆盖;
  • 根据变量声明生成对应的属性,此时初始值为undefined。如果变量名已声明,则忽略该变量声明;

还是以刚才的代码为例:

var scope = 'global scope';

function checkscope(s) {
  var scope = 'local scope';

  function f() {
    return scope;
  }
  return f();
}
checkscope('scope');

在执行checkscope函数之前,会为其创建执行上下文,并初始化变量对象,此时的变量对象为:

VO = {
  arguments: {
    0: 'scope',
    length: 1,
  },
  s: 'scope', // 传入的参数
  f: pointer to function f(),
  scope: undefined, // 此时声明的变量为undefined
}

随着checkscope函数的执行,变量对象被激活,变相对象内的属性随着代码的执行而改变:

VO = {
  arguments: {
    0: 'scope',
    length: 1,
  },
  s: 'scope', // 传入的参数
  f: pointer to function f(),
  scope: 'local scope', // 变量赋值
}

其实也可以用另一个概念“函数提升”和“变量提升”来解释:

function checkscope(s) {
  function f() { // 函数提升
    return scope;
  }
  var scope; // 变量声明提升

  scope = 'local scope' // 变量对象的激活也相当于此时的变量赋值

  return f();
}

作用域链

每一个执行上下文都有三个重要的属性:

  • 变量对象
  • 作用域链
  • this

这一节我们说一下作用域链。

什么是作用域链

当查找变量的时候,会先从当前上下文的变量对象中查找,如果没有找到,就会从父级执行上下文的变量对象中查找,一直找到全局上下文的变量对象。这样由多个执行上下文的变量对象构成的链表就叫做作用域链。

下面还是用我们的例子来讲解作用域链:

var scope = 'global scope';

function checkscope(s) {
  var scope = 'local scope';

  function f() {
    return scope;
  }
  return f();
}
checkscope('scope');

首先在checkscope函数声明的时候,内部会绑定一个 [[scope]] 的内部属性:

checkscope.[[scope]] = [
  globalContext.VO
];

接着在checkscope函数执行之前,创建执行上下文checkscopeContext,并推入执行上下文栈:

[[scope]]
// -> 初始化作用域链;
checkscopeContext = {
  scope: checkscope.[[scope]],
}

// -> 创建变量对象
checkscopeContext = {
  scope: checkscope.[[scope]],
  VO = {
    arguments: {
      0: 'scope',
      length: 1,
    },
    s: 'scope', // 传入的参数
    f: pointer to function f(),
    scope: undefined, // 此时声明的变量为undefined
  },
}

// -> 将变量对象压入作用域链的最顶端
checkscopeContext = {
  scope: [VO, checkscope.[[scope]]],
  VO = {
    arguments: {
      0: 'scope',
      length: 1,
    },
    s: 'scope', // 传入的参数
    f: pointer to function f(),
    scope: undefined, // 此时声明的变量为undefined
  },
}

接着,随着函数的执行,修改变量对象:

checkscopeContext = {
  scope: [VO, checkscope.[[scope]]],
  VO = {
    arguments: {
      0: 'scope',
      length: 1,
    },
    s: 'scope', // 传入的参数
    f: pointer to function f(),
    scope: 'local scope', // 变量赋值
  }
}

与此同时遇到f函数声明,f函数绑定 [[scope]] 属性:

checkscope.[[scope]] = [
  checkscopeContext.VO, // f函数的作用域还包括checkscope的变量对象
  globalContext.VO
];

之后f函数的步骤同checkscope函数。

再来一个经典的例子:

var data = [];

for (var i = 0; i < 6; i++) {
  data[i] = function () {
    console.log(i);
  };
}

data[0]();
// ...

很简单,不管访问data几,最终console打印出来的都是6,因为在ES6之前,JS都没有块级作用域的概念,for循环内的代码都在全局作用域下。

在data函数执行之前,此时全局上下文的变量对象为:

globalContext.VO = {
  data: [pointer to function ()],
  i: 6, // 注意:此时的i值为6
}

每一个data匿名函数的执行上下文链大致都如下:

data[n]Context = {
  scope: [VO, globalContext.VO],
  VO: {
    arguments: {
      length: 0,
    }
  }
}

那么在函数执行的时候,会先去自己匿名函数的变量对象上找i的值,发现没有后会沿着作用域链查找,找到了全局执行上下文的变量对象,而此时全局执行上下文的变量对象中的i为6,所以每一次都打印的是6了。

词法作用域 & 动态作用域

JavaScript这门语言是基于词法作用域来创建作用域的,也就是说一个函数的作用域在函数声明的时候就已经确定了,而不是函数执行的时候。

改一下之前的例子:

var scope = 'global scope';

function f() {
  console.log(scope)
}

function checkscope() {
  var scope = 'local scope';

  f();
}
checkscope();

因为JavaScript是基于词法作用域创建作用域的,所以打印的结果是 global scope 而不是 local scope 。我们结合上面的作用域链来分析一下:

首先遇到了f函数的声明,此时为其绑定 [[scope]] 属性:

// 这里就是我们所说的“一个函数的作用域在函数声明的时候就已经确定了”
f.[[scope]] = [
  globalContext.VO, // 此时的全局上下文的变量对象中保存着scope = 'global scope';
];

然后我们直接跳过checkscope的执行上下文的创建和执行的过程,直接来到f函数的执行上。此时在函数执行之前初始化f函数的执行上下文:

// 这里就是为什么会打印global scope
fContext = {
  scope: [VO, globalContext.VO], // 复制f.[[scope]],f.[[scope]]只有全局执行上下文的变量对象
  VO = {
    arguments: {
      length: 0,
    },
  },
}

然后到了f函数执行的过程, console.log(scope) ,会沿着f函数的作用域链查找scope变量,先是去自己执行上下文的变量对象中查找,没有找到,然后去global执行上下文的变量对象上查找,此时scope的值为 global scope

this

在这里this绑定也可以分为全局执行上下文和函数执行上下文:

  • 在全局执行上下文中,this的指向全局对象。(在浏览器中,this引用 Window 对象)。
  • 在函数执行上下文中,this 的值取决于该函数是如何被调用的。如果它被一个引用对象调用,那么this会被设置成那个对象,否则this的值被设置为全局对象或者undefined(在严格模式下)

总结起来就是,谁调用了,this就指向谁。

执行上下文

这里,根据之前的例子来完整的走一遍执行上下文的流程:

var scope = 'global scope';

function checkscope(s) {
  var scope = 'local scope';

  function f() {
    return scope;
  }
  return f();
}
checkscope('scope');

首先,执行全局代码,创建全局执行上下文,并且全局执行上下文进入执行上下文栈:

globalContext = {
  scope: [globalContext.VO],
  VO: global,
  this: globalContext.VO
}

ESC = [
  globalContext,
]

然后随着代码的执行,走到了checkscope函数声明的阶段,此时绑定 [[scope]] 属性:

checkscope.[[scope]] = [
  globalContext.VO,
]

在checkscope函数执行之前,创建checkscope函数的执行上下文,并且checkscope执行上下文入栈:

// 创建执行上下文
checkscopeContext = {
  scope: [VO, globalContext.VO], // 复制[[scope]]属性,然后VO推入作用域链顶端
  VO = {
    arguments: {
      0: 'scope',
      length: 1,
    },
    s: 'scope', // 传入的参数
    f: pointer to function f(),
    scope: undefined,
  },
  this: globalContext.VO,
}

// 进入执行上下文栈
ESC = [
  checkscopeContext,
  globalContext,
]

checkscope函数执行,更新变量对象:

// 创建执行上下文
checkscopeContext = {
  scope: [VO, globalContext.VO], // 复制[[scope]]属性,然后VO推入作用域链顶端
  VO = {
    arguments: {
      0: 'scope',
      length: 1,
    },
    s: 'scope', // 传入的参数
    f: pointer to function f(),
    scope: 'local scope', // 更新变量
  },
  this: globalContext.VO,
}

f函数声明,绑定 [[scope]] 属性:

f.[[scope]] = [
  checkscopeContext.VO,
  globalContext.VO,
]

f函数执行,创建执行上下文,推入执行上下文栈:

// 创建执行上下文
fContext = {
  scope: [VO, checkscopeContext.VO, globalContext.VO], // 复制[[scope]]属性,然后VO推入作用域链顶端
  VO = {
    arguments: {
      length: 0,
    },
  },
  this: globalContext.VO,
}

// 入栈
ESC = [
  fContext,
  checkscopeContext,
  globalContext,
]

f函数执行完成,f函数执行上下文出栈,checkscope函数执行完成,checkscope函数出栈:

ESC = [
  // fContext出栈
  checkscopeContext,
  globalContext,
]

ESC = [
  // checkscopeContext出栈,
  globalContext,
]

到此,一个整体的执行上下文的流程就分析完了。


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Effective Python

Effective Python

布雷特·斯拉特金(Brett Slatkin) / 爱飞翔 / 机械工业出版社 / 2016-1 / 59

用Python编写程序,是相当容易的,所以这门语言非常流行。但若想掌握Python所特有的优势、魅力和表达能力,则相当困难,而且语言中还有很多隐藏的陷阱,容易令开发者犯错。 本书可以帮你掌握真正的Pythonic编程方式,令你能够完全发挥出Python语言的强大功能,并写出健壮而高效的代码。Scott Meyers在畅销书《Effective C++》中开创了一种以使用场景为主导的精练教学方......一起来看看 《Effective Python》 这本书的介绍吧!

图片转BASE64编码
图片转BASE64编码

在线图片转Base64编码工具

URL 编码/解码
URL 编码/解码

URL 编码/解码

XML 在线格式化
XML 在线格式化

在线 XML 格式化压缩工具