内容简介:首先创建一个基础的user“模型”(只是为了演示,并不是真正的模型):然后通过定义一个映射属性名称到传递对象到创建的schema的
快速上手
Declaring Schemas
首先创建一个基础的user“模型”(只是为了演示,并不是真正的模型):
import datetime as dt class User(object): def __init__(self, name, email): self.name = name self.email = email self.created_at = dt.datetime.now() def __repr__(self): return '<User(name={self.name!r})>'.format(self=self)
然后通过定义一个映射属性名称到 Field
对象的类创建 schema
:
from marshmallow import Schema, fields class UserSchema(Schema): name = fields.Str() email = fields.Email() created_at = fields.DateTime()
Serializing Objects (“Dumping”)
传递对象到创建的schema的 dump
方法,返回一个序列化字典对象(和一个错误字典对象,下文讲):
from marshmallow import pprint user = User(name="Monty", email="monty@python.org") schema = UserSchema() result = schema.dump(user) pprint(result.data) # {"name": "Monty", # "email": "monty@python.org", # "created_at": "2014-08-17T14:54:16.049594+00:00"}
也可以使用 dumps
方法序列化对象为JSON字符串:
json_result = schema.dumps(user) pprint(json_result.data) # '{"name": "Monty", "email": "monty@python.org", "created_at": "2014-08-17T14:54:16.049594+00:00"}'
Filtering output
使用 only
参数指定要序列化输出的字段:
summary_schema = UserSchema(only=('name', 'email')) summary_schema.dump(user).data # {"name": "Monty Python", "email": "monty@python.org"}
使用 exclude
参数指定不进行序列化输出的字段。
Deserializing Objects (“Loading”)
dump方法对应的是 load
方法,它反序列化一个字典为 python 数据结构。
load方法默认返回一个 fields
字段和反序列化值对应的字典对象:
from pprint import pprint user_data = { 'created_at': '2014-08-11T05:26:03.869245', 'email': u'ken@yahoo.com', 'name': u'Ken' } schema = UserSchema() result = schema.load(user_data) pprint(result.data) # {'name': 'Ken', # 'email': 'ken@yahoo.com', # 'created_at': datetime.datetime(2014, 8, 11, 5, 26, 3, 869245)}
Deserializing to Objects
在 Schema
子类中定义一个方法并用 post_load
装饰,该方法接收一个要反序列化的数据字典返回原始python对象:
from marshmallow import Schema, fields, post_load class UserSchema(Schema): name = fields.Str() email = fields.Email() created_at = fields.DateTime() @post_load def make_user(self, data): return User(**data)
现在调用load方法将返回一个User对象:
user_data = { 'name': 'Ronnie', 'email': 'ronnie@stones.com' } schema = UserSchema() result = schema.load(user_data) result.data # => <User(name='Ronnie')>
Handling Collections of Objects
可迭代的对象集合也可以进行序列化和反序列化。只需要设置 many=True
:
user1 = User(name="Mick", email="mick@stones.com") user2 = User(name="Keith", email="keith@stones.com") users = [user1, user2] schema = UserSchema(many=True) result = schema.dump(users) # OR UserSchema().dump(users, many=True) result.data # [{'name': u'Mick', # 'email': u'mick@stones.com', # 'created_at': '2014-08-17T14:58:57.600623+00:00'} # {'name': u'Keith', # 'email': u'keith@stones.com', # 'created_at': '2014-08-17T14:58:57.600623+00:00'}]
Validation
Schema.load()
和 Schema.loads()
返回值的第二个元素是一个验证错误的字典。某些fields例如 Email
和 URL
内置了验证器:
data, errors = UserSchema().load({'email': 'foo'}) errors # => {'email': ['"foo" is not a valid email address.']} # OR, equivalently result = UserSchema().load({'email': 'foo'}) result.errors # => {'email': ['"foo" is not a valid email address.']}
验证集合时,错误字典将基于无效字段的索引作为键:
class BandMemberSchema(Schema): name = fields.String(required=True) email = fields.Email() user_data = [ {'email': 'mick@stones.com', 'name': 'Mick'}, {'email': 'invalid', 'name': 'Invalid'}, # invalid email {'email': 'keith@stones.com', 'name': 'Keith'}, {'email': 'charlie@stones.com'}, # missing "name" ] result = BandMemberSchema(many=True).load(user_data) result.errors # {1: {'email': ['"invalid" is not a valid email address.']}, # 3: {'name': ['Missing data for required field.']}}
通过给fields的 validate
参数传递callable对象,可以执行额外的验证:
class ValidatedUserSchema(UserSchema): # NOTE: This is a contrived example. # You could use marshmallow.validate.Range instead of an anonymous function here age = fields.Number(validate=lambda n: 18 <= n <= 40) in_data = {'name': 'Mick', 'email': 'mick@stones.com', 'age': 71} result = ValidatedUserSchema().load(in_data) result.errors # => {'age': ['Validator <lambda>(71.0) is False']}
验证函数可以返回布尔值或抛出 ValidationError
异常。如果是抛出异常,其信息将保存在错误字典中:
from marshmallow import Schema, fields, ValidationError def validate_quantity(n): if n < 0: raise ValidationError('Quantity must be greater than 0.') if n > 30: raise ValidationError('Quantity must not be greater than 30.') class ItemSchema(Schema): quantity = fields.Integer(validate=validate_quantity) in_data = {'quantity': 31} result, errors = ItemSchema().load(in_data) errors # => {'quantity': ['Quantity must not be greater than 30.']}
Field Validators as Methods
使用 validates
装饰器注册方法验证器:
from marshmallow import fields, Schema, validates, ValidationError class ItemSchema(Schema): quantity = fields.Integer() @validates('quantity') def validate_quantity(self, value): if value < 0: raise ValidationError('Quantity must be greater than 0.') if value > 30: raise ValidationError('Quantity must not be greater than 30.')
strict Mode
在schema构造器或 class Meta
中设置 strict=True
,遇到不合法数据时将抛出异常,通过 ValidationError.messages
属性可以访问验证错误的字典:
from marshmallow import ValidationError try: UserSchema(strict=True).load({'email': 'foo'}) except ValidationError as err: print(err.messages)# => {'email': ['"foo" is not a valid email address.']}
Required Fields
设置 required=True
可以定义一个必要字段,调用 Schema.load()
方法时如果字段值缺失将验证失败并保存错误信息。
给 error_messages
参数传递一个dict对象可以自定义必要字段的错误信息:
class UserSchema(Schema): name = fields.String(required=True) age = fields.Integer( required=True, error_messages={'required': 'Age is required.'} ) city = fields.String( required=True, error_messages={'required': {'message': 'City required', 'code': 400}} ) email = fields.Email() data, errors = UserSchema().load({'email': 'foo@bar.com'}) errors # {'name': ['Missing data for required field.'], # 'age': ['Age is required.'], # 'city': {'message': 'City required', 'code': 400}}
Partial Loading
在多处使用同一个schema对象的场景下,通过指定 partial
参数,可以仅检查部分必要字段:
class UserSchema(Schema): name = fields.String(required=True) age = fields.Integer(required=True) data, errors = UserSchema().load({'age': 42}, partial=('name',)) # OR UserSchema(partial=('name',)).load({'age': 42}) data, errors # => ({'age': 42}, {})
或者设置 partial=True
完全不检查必要字段:
class UserSchema(Schema): name = fields.String(required=True) age = fields.Integer(required=True) data, errors = UserSchema().load({'age': 42}, partial=True) # OR UserSchema(partial=True).load({'age': 42}) data, errors # => ({'age': 42}, {})
Schema.validate
使用 Schema.validate()
可以只验证输入数据而不反序列化:
errors = UserSchema().validate({'name': 'Ronnie', 'email': 'invalid-email'}) errors # {'email': ['"invalid-email" is not a valid email address.']}
Specifying Attribute Names
默认情况下schema序列化处理和field名称相同的对象属性。对于属性和field不相同的场景,通过 attribute
参数指定field使用哪个属性:
class UserSchema(Schema): name = fields.String() email_addr = fields.String(attribute="email") date_created = fields.DateTime(attribute="created_at") user = User('Keith', email='keith@stones.com') ser = UserSchema() result, errors = ser.dump(user) pprint(result) # {'name': 'Keith', # 'email_addr': 'keith@stones.com', # 'date_created': '2014-08-17T14:58:57.600623+00:00'}
Specifying Deserialization Keys
默认情况下schema反序列化处理键和field名称相同的字典。可以通过 load_from
参数指定额外处理的字典键:
class UserSchema(Schema): name = fields.String() email = fields.Email(load_from='emailAddress') data = { 'name': 'Mike', 'emailAddress': 'foo@bar.com' } s = UserSchema() result, errors = s.load(data) #{'name': u'Mike', # 'email': 'foo@bar.com'}
Specifying Serialization Keys
如果要序列化输出和field不同的键,而不是field名称,可以通过 dump_to
参数指定(和 load_from
相反):
class UserSchema(Schema): name = fields.String(dump_to='TheName') email = fields.Email(load_from='CamelCasedEmail', dump_to='CamelCasedEmail') data = { 'name': 'Mike', 'email': 'foo@bar.com' } s = UserSchema() result, errors = s.dump(data) #{'TheName': u'Mike', # 'CamelCasedEmail': 'foo@bar.com'}
Refactoring: Implicit Field Creation
当schema中有很多属性时,为每个属性指定field类型会产生大量的重复工作,尤其是大部分属性为原生的python数据类型时。
class Meta
允许开发人员指定序列化哪些属性,Marshmallow会基于属性类型选择合适的field类型:
# 重构UserSchema class UserSchema(Schema): uppername = fields.Function(lambda obj: obj.name.upper()) class Meta: fields = ("name", "email", "created_at", "uppername") user = User(name="erika", email="marshmallow@126.com") schema = UserSchema() result = schema.dump(user) print(result.data) # {'created_at': '2019-05-20T15:45:27.760000+00:00', 'uppername': 'ERIKA', 'name': 'erika', 'email': 'marshmallow@126.com'}
除了显式声明的field外,使用 additional
选项可以指定还要包含哪些fields。以下代码等同于上面的代码:
class UserSchema(Schema): uppername = fields.Function(lambda obj: obj.name.upper()) class Meta: # No need to include 'uppername' additional = ("name", "email", "created_at")
Ordering Output
设置 ordered=True
可以维护序列化输出的field顺序,此时序列化字典为 collections.OrderedDict
类型:
from collections import OrderedDict class UserSchema(Schema): uppername = fields.Function(lambda obj: obj.name.upper()) class Meta: fields = ("name", "email", "created_at", "uppername") ordered = True u = User('Charlie', 'charlie@stones.com') schema = UserSchema() result = schema.dump(u) assert isinstance(result.data, OrderedDict) # marshmallow's pprint function maintains order pprint(result.data, indent=2) # { # "name": "Charlie", # "email": "charlie@stones.com", # "created_at": "2014-10-30T08:27:48.515735+00:00", # "uppername": "CHARLIE" # }
“Read-only” and “Write-only” Fields
在web API上下文中, dump_only
和 load_only
参数分别类似于只读和只写的概念:
class UserSchema(Schema): name = fields.Str() # password is "write-only" password = fields.Str(load_only=True) # created_at is "read-only" created_at = fields.DateTime(dump_only=True)
以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网
猜你喜欢:本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。