python三方库之marshmallow快速上手

栏目: Python · 发布时间: 5年前

内容简介:首先创建一个基础的user“模型”(只是为了演示,并不是真正的模型):然后通过定义一个映射属性名称到传递对象到创建的schema的

快速上手

Declaring Schemas

首先创建一个基础的user“模型”(只是为了演示,并不是真正的模型):

import datetime as dt

class User(object):
    def __init__(self, name, email):
        self.name = name
        self.email = email
        self.created_at = dt.datetime.now()

    def __repr__(self):
        return '<User(name={self.name!r})>'.format(self=self)

然后通过定义一个映射属性名称到 Field 对象的类创建 schema

from marshmallow import Schema, fields

class UserSchema(Schema):
    name = fields.Str()
    email = fields.Email()
    created_at = fields.DateTime()

Serializing Objects (“Dumping”)

传递对象到创建的schema的 dump 方法,返回一个序列化字典对象(和一个错误字典对象,下文讲):

from marshmallow import pprint

user = User(name="Monty", email="monty@python.org")
schema = UserSchema()
result = schema.dump(user)
pprint(result.data)
# {"name": "Monty",
#  "email": "monty@python.org",
#  "created_at": "2014-08-17T14:54:16.049594+00:00"}

也可以使用 dumps 方法序列化对象为JSON字符串:

json_result = schema.dumps(user)
pprint(json_result.data)
# '{"name": "Monty", "email": "monty@python.org", "created_at": "2014-08-17T14:54:16.049594+00:00"}'

Filtering output

使用 only 参数指定要序列化输出的字段:

summary_schema = UserSchema(only=('name', 'email'))
summary_schema.dump(user).data
# {"name": "Monty Python", "email": "monty@python.org"}

使用 exclude 参数指定不进行序列化输出的字段。

Deserializing Objects (“Loading”)

dump方法对应的是 load 方法,它反序列化一个字典为 python 数据结构。

load方法默认返回一个 fields 字段和反序列化值对应的字典对象:

from pprint import pprint

user_data = {
    'created_at': '2014-08-11T05:26:03.869245',
    'email': u'ken@yahoo.com',
    'name': u'Ken'
}
schema = UserSchema()
result = schema.load(user_data)
pprint(result.data)
# {'name': 'Ken',
#  'email': 'ken@yahoo.com',
#  'created_at': datetime.datetime(2014, 8, 11, 5, 26, 3, 869245)}

Deserializing to Objects

Schema 子类中定义一个方法并用 post_load 装饰,该方法接收一个要反序列化的数据字典返回原始python对象:

from marshmallow import Schema, fields, post_load

class UserSchema(Schema):
    name = fields.Str()
    email = fields.Email()
    created_at = fields.DateTime()

    @post_load
    def make_user(self, data):
        return User(**data)

现在调用load方法将返回一个User对象:

user_data = {
    'name': 'Ronnie',
    'email': 'ronnie@stones.com'
}
schema = UserSchema()
result = schema.load(user_data)
result.data  # => <User(name='Ronnie')>

Handling Collections of Objects

可迭代的对象集合也可以进行序列化和反序列化。只需要设置 many=True

user1 = User(name="Mick", email="mick@stones.com")
user2 = User(name="Keith", email="keith@stones.com")
users = [user1, user2]
schema = UserSchema(many=True)
result = schema.dump(users)  # OR UserSchema().dump(users, many=True)
result.data
# [{'name': u'Mick',
#   'email': u'mick@stones.com',
#   'created_at': '2014-08-17T14:58:57.600623+00:00'}
#  {'name': u'Keith',
#   'email': u'keith@stones.com',
#   'created_at': '2014-08-17T14:58:57.600623+00:00'}]

Validation

Schema.load()Schema.loads() 返回值的第二个元素是一个验证错误的字典。某些fields例如 EmailURL 内置了验证器:

data, errors = UserSchema().load({'email': 'foo'})
errors  # => {'email': ['"foo" is not a valid email address.']}
# OR, equivalently
result = UserSchema().load({'email': 'foo'})
result.errors  # => {'email': ['"foo" is not a valid email address.']}

验证集合时,错误字典将基于无效字段的索引作为键:

class BandMemberSchema(Schema):
    name = fields.String(required=True)
    email = fields.Email()

user_data = [
    {'email': 'mick@stones.com', 'name': 'Mick'},
    {'email': 'invalid', 'name': 'Invalid'},  # invalid email
    {'email': 'keith@stones.com', 'name': 'Keith'},
    {'email': 'charlie@stones.com'},  # missing "name"
]

result = BandMemberSchema(many=True).load(user_data)
result.errors
# {1: {'email': ['"invalid" is not a valid email address.']},
#  3: {'name': ['Missing data for required field.']}}

通过给fields的 validate 参数传递callable对象,可以执行额外的验证:

class ValidatedUserSchema(UserSchema):
    # NOTE: This is a contrived example.
    # You could use marshmallow.validate.Range instead of an anonymous function here
    age = fields.Number(validate=lambda n: 18 <= n <= 40)

in_data = {'name': 'Mick', 'email': 'mick@stones.com', 'age': 71}
result = ValidatedUserSchema().load(in_data)
result.errors  # => {'age': ['Validator <lambda>(71.0) is False']}

验证函数可以返回布尔值或抛出 ValidationError 异常。如果是抛出异常,其信息将保存在错误字典中:

from marshmallow import Schema, fields, ValidationError

def validate_quantity(n):
    if n < 0:
        raise ValidationError('Quantity must be greater than 0.')
    if n > 30:
        raise ValidationError('Quantity must not be greater than 30.')

class ItemSchema(Schema):
    quantity = fields.Integer(validate=validate_quantity)

in_data = {'quantity': 31}
result, errors = ItemSchema().load(in_data)
errors  # => {'quantity': ['Quantity must not be greater than 30.']}

Field Validators as Methods

使用 validates 装饰器注册方法验证器:

from marshmallow import fields, Schema, validates, ValidationError

class ItemSchema(Schema):
    quantity = fields.Integer()

    @validates('quantity')
    def validate_quantity(self, value):
        if value < 0:
            raise ValidationError('Quantity must be greater than 0.')
        if value > 30:
            raise ValidationError('Quantity must not be greater than 30.')

strict Mode

在schema构造器或 class Meta 中设置 strict=True ,遇到不合法数据时将抛出异常,通过 ValidationError.messages 属性可以访问验证错误的字典:

from marshmallow import ValidationError

try:
    UserSchema(strict=True).load({'email': 'foo'})
except ValidationError as err:
    print(err.messages)# => {'email': ['"foo" is not a valid email address.']}

Required Fields

设置 required=True 可以定义一个必要字段,调用 Schema.load() 方法时如果字段值缺失将验证失败并保存错误信息。

error_messages 参数传递一个dict对象可以自定义必要字段的错误信息:

class UserSchema(Schema):
    name = fields.String(required=True)
    age = fields.Integer(
        required=True,
        error_messages={'required': 'Age is required.'}
    )
    city = fields.String(
        required=True,
        error_messages={'required': {'message': 'City required', 'code': 400}}
    )
    email = fields.Email()

data, errors = UserSchema().load({'email': 'foo@bar.com'})
errors
# {'name': ['Missing data for required field.'],
#  'age': ['Age is required.'],
#  'city': {'message': 'City required', 'code': 400}}

Partial Loading

在多处使用同一个schema对象的场景下,通过指定 partial 参数,可以仅检查部分必要字段:

class UserSchema(Schema):
    name = fields.String(required=True)
    age = fields.Integer(required=True)

data, errors = UserSchema().load({'age': 42}, partial=('name',))
# OR UserSchema(partial=('name',)).load({'age': 42})
data, errors  # => ({'age': 42}, {})

或者设置 partial=True 完全不检查必要字段:

class UserSchema(Schema):
    name = fields.String(required=True)
    age = fields.Integer(required=True)

data, errors = UserSchema().load({'age': 42}, partial=True)
# OR UserSchema(partial=True).load({'age': 42})
data, errors  # => ({'age': 42}, {})

Schema.validate

使用 Schema.validate() 可以只验证输入数据而不反序列化:

errors = UserSchema().validate({'name': 'Ronnie', 'email': 'invalid-email'})
errors  # {'email': ['"invalid-email" is not a valid email address.']}

Specifying Attribute Names

默认情况下schema序列化处理和field名称相同的对象属性。对于属性和field不相同的场景,通过 attribute 参数指定field使用哪个属性:

class UserSchema(Schema):
    name = fields.String()
    email_addr = fields.String(attribute="email")
    date_created = fields.DateTime(attribute="created_at")

user = User('Keith', email='keith@stones.com')
ser = UserSchema()
result, errors = ser.dump(user)
pprint(result)
# {'name': 'Keith',
#  'email_addr': 'keith@stones.com',
#  'date_created': '2014-08-17T14:58:57.600623+00:00'}

Specifying Deserialization Keys

默认情况下schema反序列化处理键和field名称相同的字典。可以通过 load_from 参数指定额外处理的字典键:

class UserSchema(Schema):
    name = fields.String()
    email = fields.Email(load_from='emailAddress')

data = {
    'name': 'Mike',
    'emailAddress': 'foo@bar.com'
}
s = UserSchema()
result, errors = s.load(data)
#{'name': u'Mike',
# 'email': 'foo@bar.com'}

Specifying Serialization Keys

如果要序列化输出和field不同的键,而不是field名称,可以通过 dump_to 参数指定(和 load_from 相反):

class UserSchema(Schema):
    name = fields.String(dump_to='TheName')
    email = fields.Email(load_from='CamelCasedEmail', dump_to='CamelCasedEmail')

data = {
    'name': 'Mike',
    'email': 'foo@bar.com'
}
s = UserSchema()
result, errors = s.dump(data)
#{'TheName': u'Mike',
# 'CamelCasedEmail': 'foo@bar.com'}

Refactoring: Implicit Field Creation

当schema中有很多属性时,为每个属性指定field类型会产生大量的重复工作,尤其是大部分属性为原生的python数据类型时。

class Meta 允许开发人员指定序列化哪些属性,Marshmallow会基于属性类型选择合适的field类型:

# 重构UserSchema
class UserSchema(Schema):
    uppername = fields.Function(lambda obj: obj.name.upper())

    class Meta:
        fields = ("name", "email", "created_at", "uppername")


user = User(name="erika", email="marshmallow@126.com")
schema = UserSchema()
result = schema.dump(user)
print(result.data)

# {'created_at': '2019-05-20T15:45:27.760000+00:00', 'uppername': 'ERIKA', 'name': 'erika', 'email': 'marshmallow@126.com'}

除了显式声明的field外,使用 additional 选项可以指定还要包含哪些fields。以下代码等同于上面的代码:

class UserSchema(Schema):
    uppername = fields.Function(lambda obj: obj.name.upper())
    class Meta:
        # No need to include 'uppername'
        additional = ("name", "email", "created_at")

Ordering Output

设置 ordered=True 可以维护序列化输出的field顺序,此时序列化字典为 collections.OrderedDict 类型:

from collections import OrderedDict

class UserSchema(Schema):
    uppername = fields.Function(lambda obj: obj.name.upper())
    class Meta:
        fields = ("name", "email", "created_at", "uppername")
        ordered = True

u = User('Charlie', 'charlie@stones.com')
schema = UserSchema()
result = schema.dump(u)
assert isinstance(result.data, OrderedDict)
# marshmallow's pprint function maintains order
pprint(result.data, indent=2)
# {
#   "name": "Charlie",
#   "email": "charlie@stones.com",
#   "created_at": "2014-10-30T08:27:48.515735+00:00",
#   "uppername": "CHARLIE"
# }

“Read-only” and “Write-only” Fields

在web API上下文中, dump_onlyload_only 参数分别类似于只读和只写的概念:

class UserSchema(Schema):
    name = fields.Str()
    # password is "write-only"
    password = fields.Str(load_only=True)
    # created_at is "read-only"
    created_at = fields.DateTime(dump_only=True)

以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

算法时代

算法时代

Luke Dormehl / 胡小锐、钟毅 / 中信出版集团 / 2016-4-1 / CNY 59.00

世界上的一切事物都可以被简化成一个公式吗?数字可以告诉我们谁是适合我们的另一半,而且能和我们白头偕老吗?算法可以准确预测电影的票房收入,并且让电影更卖座吗?程序软件能预知谁将要实施犯罪,并且精确到案发时间吗?这些事听起来都像是科幻小说中的情节,但事实上,它们仅是日益被算法主宰的人类世界的“冰山一角”。 近年来随着大数据技术的快速发展,我们正在进入“算法经济时代”。每天,算法都会对展示在我们眼......一起来看看 《算法时代》 这本书的介绍吧!

JSON 在线解析
JSON 在线解析

在线 JSON 格式化工具

Base64 编码/解码
Base64 编码/解码

Base64 编码/解码

SHA 加密
SHA 加密

SHA 加密工具