HashMap: 通俗分析核心源码

栏目: Java · 发布时间: 5年前

内容简介:[TOC]hashmap 作为 java 和 Android 开发中面试的必问问题,很有必要对其有一个详细的了解。这篇文章将会从源码角度,对其存储结构,功能实现,扩容优化等进行分析。

[TOC]

hashmap 作为 java 和 Android 开发中面试的必问问题,很有必要对其有一个详细的了解。

这篇文章将会从源码角度,对其存储结构,功能实现,扩容优化等进行分析。

分析版本 java 1.8.0

基本使用

在 hashmap 源文件前的注释中,可以了解的信息如下:

  1. 实现了 map 接口,提供了 map 相关的操作,并支持 key, value 都为 null 值。
  2. 如果元素均匀分布于桶内,可于O(1) 进行存取;
  3. 由两个因素影响性能:初始容量和扩容因子。
  4. 非同步方法:多个线程进行操作时,可能会出 ConcurrentModificationException 异常

首先从一个例子开始:

val map = HashMap<Int, Int>()
map.put(1, 1)
map.get(1)
复制代码

这是基本的存取操作,下面分别看一下每一行具体做了什么。

首先是 hashmap 的构造方法,创建了一个对象。

/**
 * 以指定的容量和扩容因子创建空的 hashmap
 */
public HashMap(int initialCapacity, float loadFactor) {
    if (initialCapacity < 0)
        throw new IllegalArgumentException("Illegal initial capacity: " +
                                           initialCapacity);
    if (initialCapacity > MAXIMUM_CAPACITY)
        initialCapacity = MAXIMUM_CAPACITY;
    if (loadFactor <= 0 || Float.isNaN(loadFactor))
        throw new IllegalArgumentException("Illegal load factor: " +
                                           loadFactor);
    this.loadFactor = loadFactor;
  	// 初始化容量大小
    this.threshold = tableSizeFor(initialCapacity);
}

public HashMap(int initialCapacity) {
    this(initialCapacity, DEFAULT_LOAD_FACTOR);
}

public HashMap() {
    this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
}

// 以 指定的 map 创建 对象
public HashMap(Map<? extends K, ? extends V> m) {
        this.loadFactor = DEFAULT_LOAD_FACTOR;
        putMapEntries(m, false);
    }
复制代码

源码中有四个构造方法,其对应的注释如上,上面提到几个值,比如容量,扩容因子等,在源码中有几个常量定义如下:

/**
 * The default initial capacity - MUST be a power of two.
 * 初始化的默认 容量 大小, 2的4次幂, 16
 */
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16

/**
 * The maximum capacity, used if a higher value is implicitly specified
 * by either of the constructors with arguments.
 * MUST be a power of two <= 1<<30.
 * 最大容量
 */
static final int MAXIMUM_CAPACITY = 1 << 30;

/**
 * The load factor used when none specified in constructor.
 * 扩容因子
 */
static final float DEFAULT_LOAD_FACTOR = 0.75f;

/**
 *  链表 树化 阈值
 */
static final int TREEIFY_THRESHOLD = 8;

/**
 * The bin count threshold for untreeifying a (split) bin during a
 * resize operation. Should be less than TREEIFY_THRESHOLD, and at
 * most 6 to mesh with shrinkage detection under removal.
 * 树 链表化 阈值
 */
static final int UNTREEIFY_THRESHOLD = 6;

/**
 * The smallest table capacity for which bins may be treeified.
 * (Otherwise the table is resized if too many nodes in a bin.)
 * Should be at least 4 * TREEIFY_THRESHOLD to avoid conflicts
 * between resizing and treeification thresholds.
 * 树化 的 最小容量
 */
static final int MIN_TREEIFY_CAPACITY = 64;

复制代码

将在稍后作出解释。

存储结构

从结构上来讲,使用 数组+链表(红黑树)实现,也即遇到 hash 冲突时使用链表法解决, 如下。

HashMap: 通俗分析核心源码

可以解释一些基本的概念:

/**
 *  map 的数组
 */
transient Node<K,V>[] table;

/**
 * 保存的节点
 */
transient Set<Map.Entry<K,V>> entrySet;

/**
 * 已存入 map 的元素的大小
 */
transient int size;

// hashmap 操作的 的次数记录
transient int modCount;

// 扩容阈值
int threshold;

// 扩容因子
final float loadFactor;
复制代码

容量表示 table 的大小,最大为 MAXIMUM_CAPACITY。

在容量不够时需要进行扩容,什么时候能确定容量不够,即 size > 容量 * 扩容因子 = 扩容阈值 时进行扩容;

默认为 0.75f。

当链表的个数大于8, 由于存取变慢,将链表转为 红黑树,优化性能;随着链表个数减少,小于 6 时, 又转为链表。

MIN_TREEIFY_CAPACITY = 64, 这个值表示当 链表的个数大于8, 但如果容量小于64,还是进行扩容,而不是转换树。

接下来首先看一下 Node<K, V> 的结构,即上图中的黑点,map 中保存的元素。

static class Node<K,V> implements Map.Entry<K,V> {
    final int hash;
    final K key;
    V value;
    Node<K,V> next;

    Node(int hash, K key, V value, Node<K,V> next) {
        this.hash = hash;
        this.key = key;
        this.value = value;
        this.next = next;
    }

    public final K getKey()        { return key; }
    public final V getValue()      { return value; }
    public final String toString() { return key + "=" + value; }

    public final int hashCode() {
        return Objects.hashCode(key) ^ Objects.hashCode(value);
    }

    public final V setValue(V newValue) {
        V oldValue = value;
        value = newValue;
        return oldValue;
    }

    public final boolean equals(Object o) {
        if (o == this)
            return true;
        if (o instanceof Map.Entry) {
            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
            if (Objects.equals(key, e.getKey()) &&
                Objects.equals(value, e.getValue()))
                return true;
        }
        return false;
    }
}
复制代码

不难理解,最基本的 hash 节点,在大部分数据结构中都有用到。

实现原理

接着看一下 put 操作:

public V put(K key, V value) {
    return putVal(hash(key), key, value, false, true);
}
复制代码
/**
 * Implements Map.put and related methods
 *
 * @param hash : key 的 hash 值
 * @param key : key
 * @param value :value 
 * @param onlyIfAbsent:为true 时表示,当节点存在时不覆盖
 * @param evict : false 表示有 构造函数调用的方法
 * @return value : 返回之前的值,空时返回 null。
 */
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
               boolean evict) {
    Node<K,V>[] tab; Node<K,V> p; int n, i;
  	// 当 table 为空时惊醒扩容,n表示容量
    if ((tab = table) == null || (n = tab.length) == 0)
        n = (tab = resize()).length;
  	// 定位 table数组中节点的位置,后面分析。 
    if ((p = tab[i = (n - 1) & hash]) == null)
        tab[i] = newNode(hash, key, value, null);
    else {
      	// 如果遇到节点冲突
        Node<K,V> e; K k;
      	// 两个节点相等,则覆盖
        if (p.hash == hash &&
            ((k = p.key) == key || (key != null && key.equals(k))))
            e = p;
      	// 如果是树节点,此时链表长度大于8, 转为红黑树
        else if (p instanceof TreeNode)
            e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
        else {
          	// 冲突时,遍历链表,插在最后面
            for (int binCount = 0; ; ++binCount) {
                if ((e = p.next) == null) {
                    p.next = newNode(hash, key, value, null);
                  	// 达到条件,链表转为树
                    if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                        treeifyBin(tab, hash);
                    break;
                }
              	// 已存在链表中则结束
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    break;
                p = e;
            }
        }
        if (e != null) { // existing mapping for key
            V oldValue = e.value;
            if (!onlyIfAbsent || oldValue == null)
                e.value = value;
            afterNodeAccess(e);
            return oldValue;
        }
    }
    ++modCount;
  	// 超过阈值,进行扩容
    if (++size > threshold)
      	// 扩容具体方法,后面介绍
        resize();
    afterNodeInsertion(evict);
    return null;
}
复制代码

主要内容在 putVal() 函数里面。

###桶节点索引定位

这里有几个特别重要的地方,同时也显示出设计的巧妙之处。

if ((p = tab[i = (n - 1) & hash]) == null)) {
        tab[i] = newNode(hash, key, value, null);
}
复制代码

上面代码表示在 table 中根据下标 i = (n - 1) & hash 定位节点的位置,如果该位置为存入节点,则创建节点并存入。

首先来看为什么要这样确定 hash 桶中的索引位置。在 n 大小的数组中,使用 hash % n 来确定位置。这里有个特例, 由于 hash 桶中的数组大小始终为 2 的 n次方,所以 可以使用 上述方法来计算,效率更高;

此时,冲突就由 hash 来决定:当 hash 不容易重复时,就越不容易冲突,看一下 hash 的计算方法:

static final int hash(Object key) {
    int h;
    return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
复制代码

这里刚开始我也不明白为甚么为进行 高位和低位进行异或运算求 hash。

n 表示 table 的大小,当 hash & (n - 1) 时,假设 hash 任意,n 为 16.

key.hash  1110 1110 1101 1010 0001 0001 0010 0110
n - 1.    0000 0000 0000 0000 0000 0000 0000 1111 (只有低位参与运算)
复制代码

上图例子中显示,如果只是 key.hash 参与运算,那么只会是低位参与, 为了防止冲突,加入高位。所以将高16 位 与 低16位进行异或运算,防止冲突。 设计极为巧妙

扩容

上面提到,桶的大小始终为为 2 的n次方,主要在于取模(上有介绍)和扩容时做优化。

那么构造方法里传入的自定义大小时怎么处理的呢, 回看代码如下:

this.threshold = tableSizeFor(initialCapacity);

    /**
     * Returns a power of two size for the given target capacity.
     */
static final int tableSizeFor(int cap) {
        int n = cap - 1;
        n |= n >>> 1;
        n |= n >>> 2;
        n |= n >>> 4;
        n |= n >>> 8;
        n |= n >>> 16;
        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
    }
复制代码

对于给定的 cap,将转化为大于等于cap 中最小的2的n次方数。这里稍微说明一下,也是设计极为巧妙。

n = cap - 1 : 为了处理 cap 刚好是 2的n次方数, n 为 高位为0, 低位为1 的数:00000111111;

n |= n >>> 1 : 无符号右移 1位。不失一般性(包含上面的结果), 假设一个数位 0000001xxxxx,

任何数从左边第一个 1 开始,右移动 1 位进行或运算;

0000 001x xxxx
0000 0001 xxxx 
0000 0011 xxxx(得到的结果左边两高位为1)
0000 0000 11xx 
0000 0011 11xx(得到的结果左边4高位为1)
复制代码

其余的计算不用进行了,这个时候可以保证低位全部位1, 加上最后的 n + 1; 即可得到结果。

那么继续往下, resize() 函数的代码如下:

/**
 * Initializes or doubles table size.  If null, allocates in
 * accord with initial capacity target held in field threshold.
 * Otherwise, because we are using power-of-two expansion, the
 * elements from each bin must either stay at same index, or move
 * with a power of two offset in the new table.
 *	初始化或者扩容为 2 倍大小。由于其始终为2 的 n 次方,所以计算的下标或者相等, 或者偏移 2的 n 次方。
 * @return the table
 */
final Node<K,V>[] resize() {
    Node<K,V>[] oldTab = table; // 旧数组
    int oldCap = (oldTab == null) ? 0 : oldTab.length; //旧 table 的容量
    int oldThr = threshold; //旧 table 的阈值
    int newCap, newThr = 0; // 新容量,新大小
    if (oldCap > 0) {
      	// 达到最大值
        if (oldCap >= MAXIMUM_CAPACITY) {
            threshold = Integer.MAX_VALUE;
            return oldTab;
        }
      	// 新容量,新阈值都扩为两倍大小
        else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                 oldCap >= DEFAULT_INITIAL_CAPACITY)
            newThr = oldThr << 1; // double threshold
    }
  	// 还未初始化,为0
    else if (oldThr > 0) // initial capacity was placed in threshold
        newCap = oldThr;  // 这里解释了构造函数为什么将 tablesizefor 赋值 threshold。
    else {               // zero initial threshold signifies using defaults
      	// 默认值
        newCap = DEFAULT_INITIAL_CAPACITY;
        newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
    }
    if (newThr == 0) {
        float ft = (float)newCap * loadFactor;
        newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                  (int)ft : Integer.MAX_VALUE);
    }
    threshold = newThr;
    @SuppressWarnings({"rawtypes","unchecked"})
  			// 新建 新容量大小的 节点数组
        Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
    table = newTab;
  	// 非初始化,旧 table 有数据
    if (oldTab != null) {
      	// 移动到新 table 里面
        for (int j = 0; j < oldCap; ++j) {
            Node<K,V> e;
          	// 该下标有节点存在
            if ((e = oldTab[j]) != null) {
              	// 旧链表该位置为置空
                oldTab[j] = null;
                if (e.next == null)
                  	// 只有一个节点,找到下标赋值 
                    newTab[e.hash & (newCap - 1)] = e;
                else if (e instanceof TreeNode)
                  	// 树的操作
                    ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                else { // preserve order
                    Node<K,V> loHead = null, loTail = null;  //低位头尾节点
                    Node<K,V> hiHead = null, hiTail = null;  //高位头尾节点
                    Node<K,V> next; 
                    do {
                        next = e.next;
                      	// 不用计算 hash, 确定新 table 中下标的位置
                      	// 后续介绍
                        if ((e.hash & oldCap) == 0) {
                            if (loTail == null)
                                loHead = e;
                            else
                                loTail.next = e;
                            loTail = e;
                        }
                        else {
                            if (hiTail == null)
                                hiHead = e;
                            else
                                hiTail.next = e;
                            hiTail = e;
                        }
                    } while ((e = next) != null);
                    if (loTail != null) {
                        loTail.next = null;
                        newTab[j] = loHead;
                    }
                    if (hiTail != null) {
                        hiTail.next = null;
                        newTab[j + oldCap] = hiHead;
                    }
                }
            }
        }
    }
    return newTab;
}
复制代码

在上面的过程中,对 if ((e.hash & oldCap) == 0) 作下解释:

在上面确定桶下标索引的位置时,使用 hash & (n - 1) 计算得到,扩容后,这里的 n 相当于 oldCap。

举个例子:

0000 0000 0000 0000 0000 0000 0000 1111 (n - 1)
0000 0000 0000 0000 0000 0000 0000 0101 (hash1) -> 0101
0000 0000 0000 0000 0000 0000 0001 0101 (hash2) -> 0101
复制代码

如上,计算时下标相同, 在同一索引位置。

0000 0000 0000 0000 0000 0000 0001 0000 (oldCap)
0000 0000 0000 0000 0000 0000 0000 0101 (hash1) ->  0101
0000 0000 0000 0000 0000 0000 0001 0101 (hash2) -> 10101
复制代码

可以看到,当冲突的节点确定索引位置时,有两种可能,在原位置或者 原位置 + oldCap。(因为结果最高位1)

因为根据 (e.hash & oldCap) 的 结果 为1 即可判断索引在高位, 为 0 即可判断索引在低位。

后续就是利用头尾节点移动冲突的值,最后返回新 table。

这就是为什么容量大小始终为 2 的 n 次方的优化点,极为巧妙。

这个时候回过来看 get 操作:

public V get(Object key) {
    Node<K,V> e;
    return (e = getNode(hash(key), key)) == null ? null : e.value;
}

    final Node<K,V> getNode(int hash, Object key) {
        Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (first = tab[(n - 1) & hash]) != null) {
            if (first.hash == hash && // always check first node
                ((k = first.key) == key || (key != null && key.equals(k))))
                return first;
            if ((e = first.next) != null) {
                if (first instanceof TreeNode)
                    return ((TreeNode<K,V>)first).getTreeNode(hash, key);
                do {
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        return e;
                } while ((e = e.next) != null);
            }
        }
        return null;
    }
复制代码

不做过多解释,有了上面的过程,相信很简单就能看懂。

关于树化后的操作

在设计良好的 hash 算法中,加上有 MIN_TREEIFY_CAPACITY 的存在,转成树的情况很少遇到,这里就不对红黑树的操作作过多分析,有需要的可以查看源码或者相关参考资料了解。

/**
     * Replaces all linked nodes in bin at index for given hash unless
     * table is too small, in which case resizes instead.
     */
    final void treeifyBin(Node<K,V>[] tab, int hash) {
        int n, index; Node<K,V> e;	
      	// 即使链表长度大于8,还要满足容量大于MIN_TREEIFY_CAPACITY
        if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
            resize();
        else if ((e = tab[index = (n - 1) & hash]) != null) {
            TreeNode<K,V> hd = null, tl = null;
            do {
                TreeNode<K,V> p = replacementTreeNode(e, null);
                if (tl == null)
                    hd = p;
                else {
                    p.prev = tl;
                    tl.next = p;
                }
                tl = p;
            } while ((e = e.next) != null);
            if ((tab[index] = hd) != null)
                hd.treeify(tab);
        }
    }
复制代码

map 的遍历

public Set<K> keySet() {
        Set<K> ks = keySet;
        if (ks == null) {
            ks = new KeySet();
            keySet = ks;
        }
        return ks;
    }
    
    public Set<Map.Entry<K,V>> entrySet() {
        Set<Map.Entry<K,V>> es;
        return (es = entrySet) == null ? (entrySet = new EntrySet()) : es;
    }
复制代码

可以获取 key 的 entry 的集合进行遍历。

总结

以上就是对 hashmap 存取过程的一个分析,主要有以下几点

  1. 初始容量及其扩容的大小
  2. 索引下标位置的确定
  3. 扩容的方案

在使用 hashmap 的过程中,扩容是一个特别耗费时间空间的操作,所以在初始化的时候给一个合适的大小。

另外需要处理并发可以使用 ConcurrentHashMap。

了解了 hashmap 的扩容,那么对其他简单数据类型的扩容也再是问题,继续看源码。

github issue 参考


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Once Upon an Algorithm

Once Upon an Algorithm

Martin Erwig / MIT Press / 2017-9-8 / GBP 22.95

How Hansel and Gretel, Sherlock Holmes, the movie Groundhog Day, Harry Potter, and other familiar stories illustrate the concepts of computing. Picture a computer scientist, staring at a screen and......一起来看看 《Once Upon an Algorithm》 这本书的介绍吧!

RGB转16进制工具
RGB转16进制工具

RGB HEX 互转工具

在线进制转换器
在线进制转换器

各进制数互转换器

HEX HSV 转换工具
HEX HSV 转换工具

HEX HSV 互换工具