内容简介:作者:疯猫子,「数据游戏」优胜队伍成员LSTM模型是RNN的一种,其特点是在单一循环神经网络的基础上,构建出了长短记忆门,也就是可以长时间发现和记忆长依赖关系。本次比赛将使用LSTM模型来预测招商银行三天后的收盘价,也就是利用5月10日前的数据,来预测5月15日的收盘价。股价价格的预测其实是一件极其不靠谱的事情。很多专业机构和量化交易的个人都是极力在规避价格预测这种做法的。
作者:疯猫子,「数据游戏」优胜队伍成员
摘要
LSTM模型是RNN的一种,其特点是在单一循环神经网络的基础上,构建出了长短记忆门,也就是可以长时间发现和记忆长依赖关系。本次比赛将使用LSTM模型来预测招商银行三天后的收盘价,也就是利用5月10日前的数据,来预测5月15日的收盘价。
一、模型选择
股价价格的预测其实是一件极其不靠谱的事情。很多专业机构和量化交易的个人都是极力在规避价格预测这种做法的。
原因有二:一是股市(无论哪个国家,哪种性质)随机突发事件太多,且突发事件对股市的影响力也是高度随机和不可预测的,也就是所谓的噪音多到让你怀疑人生。二是,连续变量作为预测目标是个糟糕的设计,因为这会使得预测空间太大,而导致所搜空间无限大。这个见解来自于强化学习,强化学习的一个技术要点就是把预测空间有限化,即便客观世界是连续而无限的,也需要采用类似于Tile coding的技术使其离散化,有限化。本着迎难而上,不成功也可以提高自己的初衷,尝试开始着手解决这一难题。
选择LSTM模型作为主算法来采用,是参考了kaggle上一个长期项目,预测美股收盘价的一个项目,其中第三名就是采用LSTM的。拿来测试之后,具有一定预测作用,但是预测精度不高,且性能不稳定。然后小组讨论后,是否就采用这个基本模型为核心,开展算法升级,得到一致同意后,于是确定了LSTM算法为核心算法,并做再次开发。
二、模型升级
LSTM模型之所有能够具有预测股价的能力,主要的还是模型本身捕捉了价格序列中的时序要素中所透射出来的信息。对于模型进行预测本身是完全没有问题的,而这次模型升级的根本目标是提升预测精度。
关于模型升级主要来自于两方面的,一是通过对模型的优化,二是优化数据。
(一)升级LSTM
LSTM模型大概有6种变形形式,主要的特点就是针对不同数据输入的类型。这里我选用了Multiple Input模型,也就是多序列输入,单序列输出。选择这个模型,对数据的构建也有非常好的促进作用,可以构建一个张量(多维数组),这个张量是一个5维张量,每个维度是一个特征数据,同时还可以按照N天的方式形成数据切片,这种设计基于两个原因:
一是数据中包含了大量信息,而越多的特征数据,提供的信息越多,多因子的雏形。
二是在保持多特征数据的基础上,保留的时间序列的特点。也就是在不增加特征的情况,将特征信息成倍增加。
这种数据处理模式极大的优于ML的诸多算法。ML的诸多算法还是以单一样本为切片输入所有维度的数据,在时序构建方面是有所欠缺的。
(二)升级数据集
数据是从大智慧中取出的数据,数据时间段是2010年1月1日—2019年5月10日,数据包含open(开盘价)、close(收盘价)、volume(成交量)、turnover(成交额度)、return(日收益率)。特征选择了5个,原因是增加特征必然增加数据的获取难度,多因子模型的构建是基于丰富的数据供应基础上,在目前的这个比赛中,是不具备这个条件,所以只用4个基本特征数据加一个收益率的衍生变量。
按照N个交易日的模式,将数据变成一个(M,N,5)的张量表。
三、代码解析
# 引入各种 工具 包 import pandas as pd import numpy as np np.set_printoptions(threshold=np.inf) #设置np数据在打印时能够完整输出,方便观察 from keras.models import Sequential from keras.layers import LSTM,Dense import keras import matplotlib.pyplot as plt # 全局参数,所有要调整的参数都在这里 dim=300 #输出维度数,也是LSTM的网络节点数 epochs=400 #训练代数(可以理解为训练次数) days=20 #读取多少天的数据作为一次预测。例如读取20天的历史数据来预测未来1天的情况 batch_size = 535 #训练批次大小,就是一次性读取多少个样本进行一次运算,越大运算速度越快,但是占用内存和显存越大,根据自己的机器性能设置。同时该参数还决定梯度下降算法的下降步长数。 开始构建网络, n_steps = days #输入张量的维度数 n_features = 5 #输入张量的维度 model_2 = Sequential() # 激活函数用relu model_2.add(LSTM(dim, activation='relu',input_shape=(n_steps, n_features))) # 输出层使用全连接层,只要一个输出节点 model_2.add(Dense(1)) #选择优化器和损失函数,优化器为线性规划算法,损失函数用的是高维空间测定距离的函数 model_2.compile(optimizer='rmsprop', loss='mse')
接下来开始构建数据,主要分为三个步骤完成
第一步导入数据
第二步生成数据切片,以及监督学习的标签,也就是三天后的收盘价。拆分训练序列训练集、测试集、标签
第三步载入模型进行训练
数据导入的基本操作,顺便观察下数据集的情况。
data = pd.read_csv('600036.csv') data.head() data.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 2250 entries, 0 to 2249 Data columns (total 5 columns): open 2250 non-null float64 close 2250 non-null float64 volume 2250 non-null int64 turnover 2250 non-null int64 return 2250 non-null float64 dtypes: float64(3), int64(2) memory usage: 88.0 KB
构建两个处理数据生成张量表的函数,一个用带标签输出,另外一个只处理输入数据集,生成20x5的切片数据。
def processData(data,lb): X,Y = [],[] for i in range(len(data)-lb-1): X.append(data[i:(i+lb),0]) try: Y.append(data[(i+2+lb),0]) except: Y.append(data[(i+lb),0]) return np.array(X),np.array(Y) def pData(data,lb): X,Y = [],[] for i in range(len(data)-lb-1): X.append(data[i:(i+lb)]) return np.array(X)
开始处理数据,同时对数据进行特征缩放处理,因为后面需要对特征缩放的数据进行逆运算,所以,要定义两个不同的特征缩放函数,否则后面针对输出标签逆运算会无法进行。
对数据进行特征缩放处理,将数据缩放到0-1区间内,这样可以加快训练结果的快速收敛。
from sklearn.preprocessing import MinMaxScaler close = data['close'] cl = np.array(close) cl = cl.reshape(cl.shape[0],1) scl = MinMaxScaler() sc2 = MinMaxScaler() cl = scl.fit_transform(cl) # 生成标签 _,y = processData(cl,days) X = data.values X = sc2.fit_transform(X) X = pData(X,days)
对数据集进行训练集和测试集的拆分,我在这里偷了个懒,只生成了两组数据集。
y_train,y_test = y[:int(y.shape[0]*0.80)],y[int(y.shape[0]*0.80):] X_train,X_test = X[:int(X.shape[0]*0.80)],X[int(X.shape[0]*0.80):]
拆分出来的数据是这个样子的
- y_train的数据结构为: (1783,)
- y_test的数据结构为: (446,)
- X_train的数据结构为: (1783, 20, 5) # 1783个20x5的数据切片
- X_test的数据结构为: (446, 20, 5) # 446个20x5的数据切片
- 张量表的结构为:(一个切片)
#执行模型训练 History = model_2.fit( X_train,y_train,batch_size=batch_size, epochs=epochs,validation_data=(X_test,y_test),shuffle=False) # 显示训练过程 plt.plot(history.history['loss']) plt.plot(history.history['val_loss'])
模型训练过程中的loss值,一个真实值的loss,一个是预测值的loss,可以明显的看到,两个loss已经快速收敛,但是预测值的loss并不稳定。在这种情况下,如果模型使用精确度来进行评估,明显已经不符合实际要求。故需要重新找到模型性能评估的方法。
模型训练完毕之后,需要对训练模型进行效果评估,大概的评估思路分为三步:
第一步单值预测检验
第二步序列预测检验
第三步用统计检验方法中的T检验对预测性能进行评估
#随机从测试集中抽取一个单一数据切片进行预测 act = [] pred = [] import random i=random.randint(0,250) Xt = model_2.predict(X_test[i].reshape(1,days,5)) print('预测值:{0}, 实际值:{1}'.format(Xt,y_test[i].reshape(-1,1))) pred.append(Xt) act.append(y_test[i])
预测值:[[0.7393236]], 实际值:[[0.74340618]]
# 将测试集中的所有切片以序列的方式进行预测,查看预测结果与真实值的拟合情况。 Xt = model_2.predict(X_test) fig = plt.gcf() plt.plot(y_test.reshape(-1,1),label='y_test') plt.plot(Xt,label='Forecast') plt.legend() # T检验中的差值统计,查看差值序列在统计挺行上的综合表现 a = y_test.reshape(-1,1) b = Xt c = a - b #实际值减去预测值 c = pd.DataFrame(c) c.describe()
统计指标说明:
- mean:代表测试集验证后的结果与真实情况的差值序列的平均值,也就是整体差异水平。正负无所谓,越趋近0越好。通过上述的结果来看,这次训练的模型预测结果于真实情况的整体误差已经小于1%,
- std:标准差,代表均值在正负两个方向的分散程度,越小越好,说明结果比较集中,误差比较小,通过以上结果来看分散度仅有4.33%,在95%的置信度下。
模型保存
因为在训练模型时,确保能够产生最大的随机数,并未设置随机数种子。如果遇到性能较好的结果就运行下面的代码,以便将模型保存在本地。方便评估模型训练的最优参数。
path='my_model_2' # 请自行设置存储路径及文件名,例如:D:\\股票\\my_model model_2.save(path+'.h5',include_optimizer=True) # 保存模型本体 model_2.save_weights(path + '_weights.h5') # 保存模型权重
模型载入执行预测
说明:
由于神经网络依靠随机数,未设置随机数种子,所以每次训练结果均不相同。所以将性能较好的模型进行存储。
在实际使用时进行模型载入,分别查看预测结果。取最佳模型。
载入数据预测5月15日的close数值
filepath = 'my_model_1' my_model = keras.models.load_model(filepath+'.h5') p_1 = my_model.predict(X_test) p_1 = scl.inverse_transform(p_1) print('5月15日的close为:',p_1[-1])
5月15日的close为: [33.819942]
总结
该模型最优参数组合,是通过几十次的反复训练所的得到的。在这个过程中还做了大量的调整和比对试验,就不做赘述,只将总结到的要点进行归纳阐述:
- 因为构建的张量维度数并不是十分大,所以在网络的设计上,一个LSTM层加一个全连接层就已经足够了。如果我们的维度数可以增加到上百个,这个情况就可以继续增加隐藏层的数量,同时使用dropout层,丢弃部分冗余。
- 对于LSTM模型,在做预测的时候,不能只给一个切片(单值)数据,这个预测的结果很大概率会产生偏差。正确的做法,应该是给一个切片序列,而你要预测的内容必须放置到最后一个。因为实验发现,LSTM模型的运行原理中,会根据上下连接的数据切片修正自己的长短记忆内容,也就是具备一定的推理能力,在使用这个模型时,需要给与足够的数据,让模型能够进行推理。
- Y值(标签)的构建同样需要和X值(输入)的设计进行关联,因为这关系到你的训练数据是离散化,还是序列化,也关系到你的训练方式是可以离散化,还是序列化(时序化)。非常重要。这也是针对预测目标反推需要选择哪些数据组成数组的宗旨。
Ad Time
了解更多「数据游戏」可以关注微信公众号数据科学与技术(read_csv) 或加入 QQ 群 759677734
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网
猜你喜欢:本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。