packetdrill--测试TCP协议栈行为的利器

栏目: 服务器 · 发布时间: 5年前

内容简介:摘要:

packetdrill--测试TCP协议栈行为的利器

摘要: packetdrill 是一个非常有用的用于测试网络协议栈的工具,由 Google 开发,它常用于对网络协议栈进行回归测试,确保新的功能不会影响原有功能。本文主要介绍其基本原理、安装、入门、测试脚本的编写方法。

1.简介

packetdrill 是一个非常有用的用于测试网络协议栈的工具,由 Google 开发,它常用于对网络协议栈进行回归测试,确保新的功能不会影响原有功能。它支持 Linux , FreeBSD , OpenBSDNetBSD 内核。它使用脚本化的语言编写测试语句,预测协议栈输出,官方也提供了许多测试脚本的例子。

2.原理

packetdrill 的整体框架如下图所示

packetdrill--测试TCP协议栈行为的利器

packetdrill 应用内部模拟了一个连接的 Remote端Local端 。其中 Remote端 用作远端发送到本机报文的通道,我们可以在 packetdrill 应用内向 tun 设备写入 IP 报文,对内核协议栈来来,这相当于从远端收到了这个 IP 报文,再经过路由,这个报文会上送协议栈。反过来说,内核协议栈的向 Remote端 发送的报文会通过这个 tun 设备回到 packetdrill 应用,这时,我们可以通过比对其输入,验证协议栈的功能正确性。

脚本文件是以 .pkt 为后缀的文件, packetdrill 启动后读取该文件, 脚本解析器 将每一行脚本语句其解析为运行时 event脚本运行机 依次执行每个 event

3.安装

packetdrill 依赖的 package : gccpythonflexbison

官方github 下载源代码后,编译即可

> ./configure
> make

4.入门

执行一个测试脚本

> ./packetdrill  tests/linux/fast_retransmit/fr-4pkt-sack-linux.pkt
>

如果没有任何输出,就表示脚本测试通过了:),否则,它会提示哪一行脚本不满足预期以及错误原因分别是什么

比如在我的机器上(内核版本4.4.0)执行下面脚本的时候出现了错误:

> ./packetdrill  tests/linux/listen/listen-incoming-ack.pkt 
tests/linux/listen/listen-incoming-ack.pkt:17: error handling packet: bad value outbound TCP option 3
script packet:  0.200000 S. 0:0(0) ack 1 <mss 1460,nop,nop,sackOK,nop,wscale 6>
actual packet:  0.201014 S. 0:0(0) ack 1 win 29200 <mss 1460,nop,nop,sackOK,nop,wscale 7>
>

它表示在执行到脚本第 17 行的时候出现了错误,脚本中 remote端 预期收到的 SYNACK 报文中 wscale=6 ,但实际收到的报文中 wscale=7

出现这种错误的原因是脚本适合的内核版本的协议栈实现与我本机版本中的不一致!内核版本不一致,协议栈的某些实现就不一致!遇到这种情况时,可以简单的修改脚本以适应我们自己使用的内核版本。

5. 脚本语言

packetdrill 并没有使用某一种现成的脚本语言,它的脚本有一些 tcpdump 影子,又有一些 socket 编程的踪迹

// Test behavior when a listener gets an incoming packet that has
// the ACK bit set but not the SYN bit set.

0.000 socket(..., SOCK_STREAM, IPPROTO_TCP) = 3
0.000 setsockopt(3, SOL_SOCKET, SO_REUSEADDR, [1], 4) = 0
0.000 bind(3, ..., ...) = 0
0.000 listen(3, 1) = 0

0.100 < . 0:0(0) win 32792 <mss 1000,sackOK,nop,nop,nop,wscale 7>
0.100 > R 0:0(0) win 0

// Now make sure that when a valid SYN arrives shortly thereafter
// (with the same address 4-tuple) we can still successfully establish
// a connection.

0.200 < S 0:0(0) win 32792 <mss 1000,sackOK,nop,nop,nop,wscale 7>
0.200 > S. 0:0(0) ack 1 <mss 1460,nop,nop,sackOK,nop,wscale 6>

0.300 < . 1:1(0) ack 1 win 320
0.300 accept(3, ..., ...) = 4

我觉得这种脚本最好的学习方法就是学习官方的例子了,在例子上依葫芦画瓢就可以构造出自己需要的脚本了!实在有疑惑还可以稍微翻翻代码!

时间戳

脚本以每行为单位,每一行都是 时间戳 + 语句 的形式。时间戳表示这条语句执行的时间, packetdrill 支持 绝对时间相对时间 两种格式.

// 相对时间,上一条脚本0.1秒后
+.1  setsockopt(3, SOL_SOCKET, SO_REUSEADDR, [1], 4) = 0

// 绝对时间,脚本开始运行后0.2秒后
0.200 setsockopt(3, SOL_SOCKET, SO_REUSEADDR, [1], 4) = 0

向协议栈注入报文

时间戳后跟着 < 符号的语句表示从 remote端 向协议栈注入报文,默认后面跟的是 TCP 报文的内容(当然也可以接其他协议,但协议栈的复杂之处大多在 TCP )

//注入一个SYN报文(S表示SYN),起始序号和结束序号为0,数据长度为0,通告窗口大小为32792,携带了mss、sack和wscale的选项
0.200 < S 0:0(0) win 32792 <mss 1000,sackOK,nop,nop,nop,wscale 7>

从协议栈接收报文

时间戳后跟着 > 符号的语句表示 remote端 预期从协议栈接收报文。这里的预期接收时间是一个范围[ ts-tolerance , ts+tolerance ],容忍时间 tolerance 默认是 4 毫秒(可以通过运行参数改变)

// 预期收到一个SYNACK报文(.表示ACK) ACK序号是1 ,携带了mss、sack和wscale的选项
0.200 > S. 0:0(0) ack 1 <mss 1460,nop,nop,sackOK,nop,wscale 6>

系统调用

上面的报文语句是站在 remote端 的角度的,系统调用是站在 local端 看的, packetdrill 支持以下的系统调用

struct system_call_entry system_call_table[] = {
    {"socket",     syscall_socket},
    {"bind",       syscall_bind},
    {"listen",     syscall_listen},
    {"accept",     syscall_accept},
    {"connect",    syscall_connect},
    {"read",       syscall_read},
    {"readv",      syscall_readv},
    {"recv",       syscall_recv},
    {"recvfrom",   syscall_recvfrom},
    {"recvmsg",    syscall_recvmsg},
    {"write",      syscall_write},
    {"writev",     syscall_writev},
    {"send",       syscall_send},
    {"sendto",     syscall_sendto},
    {"sendmsg",    syscall_sendmsg},
    {"fcntl",      syscall_fcntl},
    {"ioctl",      syscall_ioctl},
    {"close",      syscall_close},
    {"shutdown",   syscall_shutdown},
    {"getsockopt", syscall_getsockopt},
    {"setsockopt", syscall_setsockopt},
    {"poll",       syscall_poll},
    {"cap_set",    syscall_cap_set},
    {"open",       syscall_open},
    {"sendfile",   syscall_sendfile},
    {"epoll_create", syscall_epoll_create},
    {"epoll_ctl",    syscall_epoll_ctl},
    {"epoll_wait",   syscall_epoll_wait},
    {"pipe",         syscall_pipe},
    {"splice",       syscall_splice},
};

与我们习惯的的系统调用不一样的地方是, packetdrill 中的系统调用中有一些参数是不可以更改的,我们需要填写 ... (脚本运行机会帮我们填上),另外还要设置其返回值。

// socket系统调用,返回 fd = 3,这里的3只在脚本范围中有效,运行时返回的描述符的值由框架内部维护,框架会维护它们的对应关系
0.000 socket(..., SOCK_STREAM, IPPROTO_TCP) = 3

// setsockopt系统调用,第三个参数[1]表示一个指向数值1的指针
0.000 setsockopt(3, SOL_SOCKET, SO_REUSEADDR, [1], 4) = 0

// listen系统调用,后两个参数由框架确定
0.000 bind(3, ..., ...) = 0
0.000 listen(3, 1) = 0

assert

有时我们还需要窥测 TCP 运行时的更多信息,比如双方协商的 MSS 是多少,当前的窗口大小 cwnd 是多少,慢启动阈值 ssthresh 是多少。这时我们可以使用 assert 语句来预期其状态

// 预期此时的状态信息
0.300 %{
assert tcpi_reordering == 3
assert tcpi_unacked == 10
assert tcpi_sacked ==  1
}%

packetdrill 支持预期 TCP 信息如下:

/* packetdrill/gtests/net/packetdrill/tcp.h */
struct _tcp_info {
    __u8    tcpi_state;
    __u8    tcpi_ca_state;
    __u8    tcpi_retransmits;
    __u8    tcpi_probes;
    __u8    tcpi_backoff;
    __u8    tcpi_options;
    __u8    tcpi_snd_wscale:4, tcpi_rcv_wscale:4;
    __u8    tcpi_delivery_rate_app_limited:1;

    __u32    tcpi_rto;
    __u32    tcpi_ato;
    __u32    tcpi_snd_mss;
    __u32    tcpi_rcv_mss;

    __u32    tcpi_unacked;
    __u32    tcpi_sacked;
    __u32    tcpi_lost;
    __u32    tcpi_retrans;
    __u32    tcpi_fackets;

    /* Times. */
    __u32    tcpi_last_data_sent;
    __u32    tcpi_last_ack_sent;     /* Not remembered, sorry. */
    __u32    tcpi_last_data_recv;
    __u32    tcpi_last_ack_recv;

    /* Metrics. */
    __u32    tcpi_pmtu;
    __u32    tcpi_rcv_ssthresh;
    __u32    tcpi_rtt;
    __u32    tcpi_rttvar;
    __u32    tcpi_snd_ssthresh;
    __u32    tcpi_snd_cwnd;
    __u32    tcpi_advmss;
    __u32    tcpi_reordering;

    __u32    tcpi_rcv_rtt;
    __u32    tcpi_rcv_space;

    __u32    tcpi_total_retrans;

    __u64    tcpi_pacing_rate;
    __u64    tcpi_max_pacing_rate;
    __u64    tcpi_bytes_acked;    /* RFC4898 tcpEStatsAppHCThruOctetsAcked */
    __u64    tcpi_bytes_received; /* RFC4898 tcpEStatsAppHCThruOctetsReceived */
    __u32    tcpi_segs_out;         /* RFC4898 tcpEStatsPerfSegsOut */
    __u32    tcpi_segs_in;         /* RFC4898 tcpEStatsPerfSegsIn */

    __u32    tcpi_notsent_bytes;
    __u32    tcpi_min_rtt;
    __u32    tcpi_data_segs_in;    /* RFC4898 tcpEStatsDataSegsIn */
    __u32    tcpi_data_segs_out;    /* RFC4898 tcpEStatsDataSegsOut */
    __u64   tcpi_delivery_rate;

    __u64    tcpi_busy_time;      /* Time (usec) busy sending data */
    __u64    tcpi_rwnd_limited;   /* Time (usec) limited by receive window */
    __u64    tcpi_sndbuf_limited; /* Time (usec) limited by send buffer */
};

需要特别注意是,在使用 assert 时,我们要确定 struct _tcp_info 结构在 packetdrill 中和当前内核中的定义一致,否则也会报错!

(完)


以上所述就是小编给大家介绍的《packetdrill--测试TCP协议栈行为的利器》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

高性能网站建设指南

高性能网站建设指南

Steve Souders / 刘彦博 / 电子工业出版社 / 2008年 / 35.00元

本书结合Web 2.0以来Web开发领域的最新形势和特点,介绍了网站性能问题的现状、产生的原因,以及改善或解决性能问题的原则、技术技巧和最佳实践。重点关注网页的行为特征,阐释优化Ajax、CSS、JavaScript、Flash和图片处理等要素的技术,全面涵盖浏览器端性能问题的方方面面。在《高性能网站建设指南》中,作者给出了14条具体的优化原则,每一条原则都配以范例佐证,并提供了在线支持。《高性能......一起来看看 《高性能网站建设指南》 这本书的介绍吧!

URL 编码/解码
URL 编码/解码

URL 编码/解码

XML 在线格式化
XML 在线格式化

在线 XML 格式化压缩工具

RGB HSV 转换
RGB HSV 转换

RGB HSV 互转工具