内容简介:同时提供每月大咖直播分享、真实项目需求对接、干货资讯汇总,行业技术交流*延伸阅读
加入极市 专业CV交流群,与 6000+来自腾讯,华为,百度,北大,清华,中科院 等名企名校视觉开发者互动交流!更有机会与 李开复老师 等大牛群内互动!
同时提供每月大咖直播分享、真实项目需求对接、干货资讯汇总,行业技术交流 。 点击文末“ 阅读原文 ”立刻申请入群~
作者 | Mars_WH
来源 |
blog.csdn.net/hw5226349/article/details/84888416
原文 | http://bbs.cvmart.net/topics/352
深度学习(Deep Learning)因其计算复杂度或参数冗余,在一些场景和设备上限制了相应的模型部署,需要借助模型压缩、优化加速、异构计算等方法突破瓶颈。其中模型压缩算法能够有效降低参数冗余,从而减少存储占用、通信带宽和计算复杂度,有助于深度学习的应用部署,本文汇总了近几年模型压缩方面的相关研究paper,欢迎收藏阅读~
结构structure
Searching for MobileNetV3
arxiv:https://arxiv.org/abs/1905.02244v1
中文解读: 重磅!MobileNetV3 来了!
[BMVC2018] IGCV3: Interleaved Low-Rank Group Convolutions for Efficient Deep Neural Networks
https://arxiv.org/abs/1806.00178
github: https://github.com/homles11/IGCV3
[CVPR2018] IGCV2: Interleaved Structured Sparse Convolutional Neural Networks
arxiv: https://arxiv.org/abs/1804.06202
[CVPR2018] MobileNetV2: Inverted Residuals and Linear Bottlenecks
arxiv: https://arxiv.org/abs/1801.04381
github: https://github.com/tensorflow/models/tree/master/research/slim/nets/mobilenet
[ECCV2018] ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design
arxiv: https://arxiv.org/abs/1807.11164
量化quantization
intro:二值网络
https://arxiv.org/abs/1602.02830github: https://github.com/MatthieuCourbariaux/BinaryNet
https://github.com/itayhubara/BinaryNet
intro:二值网络
http://www.idi.ntnu.no/~yamanu/2017-fpga-finn-preprint.pdfgithub: https://github.com/Xilinx/FINN
intro:低bit位
https://arxiv.org/abs/1606.06160github: https://github.com/tensorpack/tensorpack/tree/master/examples/DoReFa-Net
intro:darknet团队出品
https://arxiv.org/abs/1603.05279github: https://github.com/allenai/XNOR-Net
[CVPR2016] Ternary Weight Networks
arxiv: https://arxiv.org/abs/1605.04711
github: https://github.com/fengfu-chris/caffe-twns
Google出品
https://arxiv.org/abs/1712.05877github: https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/quantize
intro:QNNs
https://arxiv.org/abs/1609.07061github: https://github.com/peisuke/qnn
Two-Step Quantization for Low-bit Neural Networks
paper: http://openaccess.thecvf.com/content_cvpr_2018/papers/Wang_Two-Step_Quantization_for_CVPR_2018_paper.pdf
剪枝pruning
通道裁剪channel pruning
[NIPS2018] Discrimination-aware Channel Pruning for Deep Neural Networks
arxiv: https://arxiv.org/abs/1810.11809
github: https://github.com/Tencent/PocketFlow支持DisChnPrunedLearner
intro:Lasso回归
https://arxiv.org/abs/1707.06168github: https://github.com/yihui-he/channel-pruning
intro:自动学习优化
https://arxiv.org/abs/1802.03494https://www.jiqizhixin.com/articles/AutoML-for-Model-Compression-and-Acceleration-on-Mobile-Devices论文翻译
github: https://github.com/Tencent/PocketFlow
[ICCV2017] Learning Efficient Convolutional Networks through Network Slimming
intro:Zhuang Liu
https://arxiv.org/abs/1708.06519github: https://github.com/Eric-mingjie/network-slimming
https://github.com/foolwood/pytorch-slimming
[ICLR2018] Rethinking the Smaller-Norm-Less-Informative Assumption in Channel Pruning of Convolution Layers
arxiv: https://arxiv.org/abs/1802.00124
github:[PyTorch] https://github.com/jack-willturner/batchnorm-pruning
[TensorFlow] https://github.com/bobye/batchnorm_prune
[CVPR2017] NISP: Pruning Networks using Neuron Importance Score Propagation
arxiv: https://arxiv.org/abs/1711.05908
[ICCV2017] ThiNet: A Filter Level Pruning Method for Deep Neural Network Compression
web: http://lamda.nju.edu.cn/luojh/project/ThiNet_ICCV17/ThiNet_ICCV17_CN.html
github: https://github.com/Roll920/ThiNet
https://github.com/Roll920/ThiNet_Code
稀疏sparsity
intro: Uber
https://arxiv.org/abs/1801.02108github: https://github.com/uber/sbnet
intro:稀疏
https://arxiv.org/abs/1710.01878github: https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/model_pruning
intro:Facebook
https://arxiv.org/abs/1706.01307github: https://github.com/facebookresearch/SparseConvNet
融合fusion
蒸馏distillation
intro:Hinton出品
https://arxiv.org/abs/1503.02531github: https://github.com/peterliht/knowledge-distillation-pytorch
综合comprehensive
intro:开创先河
https://arxiv.org/abs/1510.00149github: https://github.com/songhan
Model Distillation with Knowledge Transfer from Face Classification to Alignment and Verificationintro:实验比较多,适合工程化
arxiv:
https://arxiv.org/abs/1709.02929
持续更新中,欢迎关注
*延伸阅读
-
Facebook发布PyTorch 1.1,开源AI模型优化简化工具BoTorch & Ax
-
不用重新训练,直接将现有模型转换为 MobileNet
-
TVM: Deep Learning模型的优化编译器(强烈推荐, 附踩坑记录)
-
论文综述:当前深度神经网络模型压缩和加速方法速览
点击左下角 “ 阅读原文 ”, 即可申请加入极市 目标跟踪、目标检测、工业检测、人脸方向、视觉竞赛等技术交流群, 更有每月大咖直播分享、真实项目需求对接、干货资讯汇总,行业技术交流, 一起来让思想之光照的更远吧~
觉得有用麻烦给个在看啦~
以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网
猜你喜欢:本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。