内容简介:本文例子基于:5.0.4 Hash是Redis中一种比较常见的数据结构,其实现为hashtable/ziplist,默认创建时为ziplist,当到达一定量级时,redis会将ziplist转化为hashtable首先让我们来看一下该如何在redis里面使用Hash类型
本文例子基于:5.0.4 Hash是 Redis 中一种比较常见的数据结构,其实现为hashtable/ziplist,默认创建时为ziplist,当到达一定量级时,redis会将ziplist转化为hashtable
首先让我们来看一下该如何在redis里面使用Hash类型
//将hash表中key的域field的值设为value //如果key不存在,一个新的哈希表被创建并进行HSET操作 //如果域field已经存在于哈希表中,旧值将被覆盖 hset key field value 复制代码
代码示例:
//创建不存在的field >hset user:1 id 1 (integer) 1 //覆盖原先的field >hset user:1 id 2 (integer) 0 >hget user:1 id "2" //获取不存在的field >hget user:1 not_exist (nil) ---------------------------------- // hsetnx key field value //当不存在该field 设置成功返回1 ,否则返回0 > hsetnx user:1 id 1 (integer) 1 > hsetnx user:1 id 1 (integer) 0 > hget user:1 id "1" ---------------------------------- // hmset key field value [field value ....] //批量设置多个键值对 >HMSET user:1 id 1 name "黑搜丶D" wechat "black-search" OK ---------------------------------- //hget key field //获取hash表key中给定的field的值 >hget user:1 id "1" ---------------------------------- // hmget key field[field...] //按照我们输入的field的顺序返回 >hmget user:1 name wechat id not_exist 1) "黑搜丶D" 2) "black-search" 3) "1" 4) (nil) ---------------------------------- // hdel key field 删除返回被成功移除的域的数量 > hgetall user:1 1) "id" 2) "1" 3) "name" 4) "black-search" > HDEL user:1 name (integer) 1 > HDEL user:1 name (integer) 0 ---------------------------------- // HINCRBY key field increment // 为hash表某个整数类型的field增加increment ,返回增加increment之后的大小 > hset user:1 wechat "black-search" (integer) 1 > HINCRBY user:1 wechat 2 (error) ERR hash value is not an integer > HINCRBY user:1 id 21 (integer) 22 > hget user:1 id "22" 复制代码
至此,redis hash的用法先告一段落.
debug object key
本文开头的时候讲默认创建为ziplist,当达到一定的量级转化为hashtable,那么具体是在什么时候才会转化成hashtable呢?
# Hashes are encoded using a memory efficient data structure when they have a # small number of entries, and the biggest entry does not exceed a given # threshold. These thresholds can be configured using the following directives. hash-max-ziplist-entries 512 hash-max-ziplist-value 64 复制代码
从上文我们可以知道,只有当我们满足以下两个条件会将ziplist转化为hashtable结构
- 保存的所有键值对个数小于 512个 (这个限制是由 hash-max-ziplist-entries 参数控制,默认 512)
- 保存的所有键值对的长度都小于 64 字节(这个限制是由 hash-max-ziplist-value 参数控制,默认 64)
// 这里测试当键值对小于等于512时,hash的类型 @RequestMapping("/") public void test(){ List<Long> list = redisTemplate.executePipelined(new RedisCallback<Long>() { @Override public Long doInRedis(RedisConnection redisConnection) throws DataAccessException { redisConnection.openPipeline(); for (int i=0;i<512;i++){ redisConnection.hSet("key".getBytes(),("field"+i).getBytes(),"value".getBytes()); } return null; } }); System.out.println("结束"); } //我们发现这里hash的类型就是ziplist > debug object key Value at:0xbc6f80 refcount:1 encoding:ziplist serializedlength:2603 lru:14344435 lru_seconds_idle:17 //让我们调大一下循环的次数,改为513,我们发现 > debug object key Value at:0xbc6f80 refcount:1 encoding:hashtable serializedlength:7587 lru:14344656 lru_seconds_idle:4 复制代码
源码解析
//首先我们来看一下dict的结构 typedef struct dict { dictType *type; void *privdata; dictht ht[2]; long rehashidx; /* rehashing not in progress if rehashidx == -1 */ unsigned long iterators; /* number of iterators currently running */ } dict; typedef struct dictType { uint64_t (*hashFunction)(const void *key); void *(*keyDup)(void *privdata, const void *key); void *(*valDup)(void *privdata, const void *obj); int (*keyCompare)(void *privdata, const void *key1, const void *key2); void (*keyDestructor)(void *privdata, void *key); void (*valDestructor)(void *privdata, void *obj); } dictType; /* This is our hash table structure. Every dictionary has two of this as we * implement incremental rehashing, for the old to the new table. */ typedef struct dictht { dictEntry **table; unsigned long size; unsigned long sizemask; unsigned long used; } dictht; typedef struct dictEntry { void *key; union { void *val; uint64_t u64; int64_t s64; double d; } v; struct dictEntry *next; } dictEntry; 复制代码
从以上我们可以知道,dict里面包含了两个dictht(ps:hashtable),通常情况下只有一个dictht有值.但是当dict扩容/缩容的时候,需要分配新的dictht,然后渐进式搬迁,当迁移结束之后,旧的dictht被删除,只保留新的dictht dict如何解决hash冲突呢?其实原理跟 Java 的HashMap是一样的,采用数组+链表的方式去解决
渐进式rehash
我们知道,redis是单进程的,如果要将一个大的字典扩容是会比较耗时的,那么有可能就会将其他请求挂起。所以redis采用渐进式rehash来完成这一项艰巨任务~
dictEntry *dictAddRaw(dict *d, void *key, dictEntry **existing) { long index; dictEntry *entry; dictht *ht; //这里每次都会进行搬迁~ if (dictIsRehashing(d)) _dictRehashStep(d); /* Get the index of the new element, or -1 if * the element already exists. */ if ((index = _dictKeyIndex(d, key, dictHashKey(d,key), existing)) == -1) return NULL; /* Allocate the memory and store the new entry. * Insert the element in top, with the assumption that in a database * system it is more likely that recently added entries are accessed * more frequently. */ //当字典处于搬迁中,将新添加的元素挂到新的数组下面 ht = dictIsRehashing(d) ? &d->ht[1] : &d->ht[0]; entry = zmalloc(sizeof(*entry)); entry->next = ht->table[index]; ht->table[index] = entry; ht->used++; /* Set the hash entry fields. */ dictSetKey(d, entry, key); return entry; } 复制代码
这样,在客户端每次请求(hset/hdel等)都会去判断是否需要搬迁,那么当客户端不请求我们的时候,有可能没有完整的搬迁?no no no redis会在定时任务里面扫描处于rehash的dict,然后完成剩余的搬迁~代码如下
/* This function handles 'background' operations we are required to do * incrementally in Redis databases, such as active key expiring, resizing, * rehashing. */ void databasesCron(void) { /* Expire keys by random sampling. Not required for slaves * as master will synthesize DELs for us. */ if (server.active_expire_enabled) { if (server.masterhost == NULL) { activeExpireCycle(ACTIVE_EXPIRE_CYCLE_SLOW); } else { expireSlaveKeys(); } } /* Defrag keys gradually. */ if (server.active_defrag_enabled) activeDefragCycle(); /* Perform hash tables rehashing if needed, but only if there are no * other processes saving the DB on disk. Otherwise rehashing is bad * as will cause a lot of copy-on-write of memory pages. */ if (server.rdb_child_pid == -1 && server.aof_child_pid == -1) { /* We use global counters so if we stop the computation at a given * DB we'll be able to start from the successive in the next * cron loop iteration. */ static unsigned int resize_db = 0; static unsigned int rehash_db = 0; int dbs_per_call = CRON_DBS_PER_CALL; int j; /* Don't test more DBs than we have. */ if (dbs_per_call > server.dbnum) dbs_per_call = server.dbnum; /* Resize */ for (j = 0; j < dbs_per_call; j++) { tryResizeHashTables(resize_db % server.dbnum); resize_db++; } /* Rehash */ //重点在这里rehash if (server.activerehashing) { for (j = 0; j < dbs_per_call; j++) { int work_done = incrementallyRehash(rehash_db); if (work_done) { /* If the function did some work, stop here, we'll do * more at the next cron loop. */ break; } else { /* If this db didn't need rehash, we'll try the next one. */ rehash_db++; rehash_db %= server.dbnum; } } } } } 复制代码
应用场景
储存业务数据,我们发现其实hset的用法很简单,回顾上一讲最后的应用场景
//上一讲使用string >set user:1 '{"id":1,"name":"黑搜丶D","wechat":"black-search"}' //让我们使用hash来实现相似的做法 > HMSET user:1 id 1 name "黑搜丶D" wechat "black-search" OK //获取key的某个field的值 >hget user:1 wechat "black-search" //获取到key的所有 field:value组合 > HGETALL user:1 1) "id" 2) "1" 3) "name" 4) "\xe9\xbb\x91\xe6\x90\x9c\xe4\xb8\xb6D" 5) "wechat" 6) "black-search" 复制代码
相对于string的用法,我们使用hash get某个field或者set某个field会省很多带宽~
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网
猜你喜欢:本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
风口上的汽车新商业
郭桂山 / 人民邮电出版社 / 59
本书从互联网+汽车趋势解析、汽车电商困局突围策略、汽车后市场溃败求解等三个篇章详细阐述了作者的观察与思考,当然更多的还是作者在汽车电商行业的实践中得出的解决诸多问题的战略策略,作者站在行业之巅既有战略策略的解决方案,同时也有战术上的实施细则,更有实操案例解析与行业大咖访谈等不可多得的干货。当然,作者一向追崇的宗旨是,书中观点的对错不是最重要的,重在与行业同仁探讨,以书会友,希望作者的这块破砖头,能......一起来看看 《风口上的汽车新商业》 这本书的介绍吧!