热力图的画法-分析数据

栏目: 数据库 · 发布时间: 6年前

内容简介:数据可视化往往可以帮助我们分析特征构成,寻找特征区间,以及解释实验结果的功能。热力图是常用的数据可视化方法之一。我们函数输入一个dataframe,然后吧图片写入到制定路径就可以了。一般直接打出来显示的不太清晰,还是保存起来比较好。值得注意的是,corr()函数原本计算出来的相关矩阵取值范围是(-1,1),-1代表最负相关,1代表最正相关,0代表不想关。我认为在机器学习领域,负相关在某种意义上与正相关是一致的。所以不相关才是我们意想中的无意义。所以我给他加上了abs取绝对值

数据可视化往往可以帮助我们分析特征构成,寻找特征区间,以及解释实验结果的功能。热力图是常用的数据可视化方法之一。

代码

def plot_heatmap(df, imagSavePath):
    """
    :param df: dataframe, which has column names
    :param imagSavePath: save the image to this path
    :return: no return, save files
    """
    matrix = abs(df.corr())
    plt.subplots(figsize=(50, 50))  # 设置画面大小
    sns.heatmap(matrix)
    plt.savefig(imagSavePath)
复制代码

我们函数输入一个dataframe,然后吧图片写入到制定路径就可以了。一般直接打出来显示的不太清晰,还是保存起来比较好。

值得注意的是,corr()函数原本计算出来的相关矩阵取值范围是(-1,1),-1代表最负相关,1代表最正相关,0代表不想关。我认为在机器学习领域,负相关在某种意义上与正相关是一致的。所以不相关才是我们意想中的无意义。所以我给他加上了abs取绝对值


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

彩色UML建模

彩色UML建模

Peter Coad、Eric Lefebvre、Jeff De Luca / 王海鹏 / 2008-12 / 55.00元

本书系统地介绍了如何运用彩色来构建UML模型,书中使用4种颜色来代表4种架构型,给定一种颜色,您就知道这个类可能具有哪些属性、链接、方法和交互,从而得到一些彩色的构建块。本书包含6章展示61个领域所需的相关组件,本书讲解详细,实例丰富,展示了61个组件、283个类、46个接口、671个属性、1139个方法和65个交互序列图。. 本书可作为UML建模人员、Java工程师、技术人员的参考用书。 ......一起来看看 《彩色UML建模》 这本书的介绍吧!

图片转BASE64编码
图片转BASE64编码

在线图片转Base64编码工具

HEX CMYK 转换工具
HEX CMYK 转换工具

HEX CMYK 互转工具