内容简介:Looper.prepare() 创建当前线程的Looper。Looper初始化函数会同时创建当前线程的MessageQueue。Looper创建完成保存到ThreadLocal里。Looper.javaLooper.java
* class LooperThread extends Thread { * public Handler mHandler; * * public void run() * //1.创建当前线程的Looper,初始化函数会同时创建MessageQueue * Looper.prepare(); * //2.创建当前线程的Handler,处理发送来的消息。 * mHandler = new Handler() { * public void handleMessage(Message msg) { * // process incoming messages here * } * }; * //3.Looper开启循环,不断访问是否有新的消息 * Looper.loop(); * } 复制代码
//4.在任意线程发送一个消息 mHandler.sendMessage(msg); 复制代码
Looper的创建和存储
Looper.prepare() 创建当前线程的Looper。Looper初始化函数会同时创建当前线程的MessageQueue。Looper创建完成保存到ThreadLocal里。
Looper.java
/** Initialize the current thread as a looper. * This gives you a chance to create handlers that then reference * this looper, before actually starting the loop. Be sure to call * {@link #loop()} after calling this method, and end it by calling * {@link #quit()}. */ public static void prepare() { prepare(true); } private static void prepare(boolean quitAllowed) { if (sThreadLocal.get() != null) { throw new RuntimeException("Only one Looper may be created per thread"); } //ThreadLocal存储Looper对象,每个线程都有自己的Looper。ThreadLocal内部会区分不同线程进行存储,每个线程有独立的map, Looper的存取是存放在当前线程的map里面的 sThreadLocal.set(new Looper(quitAllowed)); } 复制代码
Looper.java
Looper初始化函数会同时创建当前线程的MessageQueue
private Looper(boolean quitAllowed) { mQueue = new MessageQueue(quitAllowed); mThread = Thread.currentThread(); } 复制代码
ThreadLocal存取Looper
简介:以线程为维度,可以拿到当前线程的map,进行数据存储。这里存放的是当前线程的Looper对象。
ThreadLocal.jva
/** * Sets the current thread's copy of this thread-local variable * to the specified value. Most subclasses will have no need to * override this method, relying solely on the {@link #initialValue} * method to set the values of thread-locals. * * @param value the value to be stored in the current thread's copy of * this thread-local. */ public void set(T value) { Thread t = Thread.currentThread(); //拿到当前线程的map. 所以不同线程调用,获取到的是不同map ThreadLocalMap map = getMap(t); if (map != null) map.set(this, value); else createMap(t, value); } /** * Get the map associated with a ThreadLocal. Overridden in * InheritableThreadLocal. * * @param t the current thread * @return the map */ ThreadLocalMap getMap(Thread t) { return t.threadLocals; } /** * Returns the value in the current thread's copy of this * thread-local variable. If the variable has no value for the * current thread, it is first initialized to the value returned * by an invocation of the {@link #initialValue} method. * * @return the current thread's value of this thread-local */ public T get() { Thread t = Thread.currentThread(); //从当前线程在后去map,从map里面去取值(这里最终从map获取的是当前线程的Looper) ThreadLocalMap map = getMap(t); if (map != null) { ThreadLocalMap.Entry e = map.getEntry(this); if (e != null) { @SuppressWarnings("unchecked") T result = (T)e.value; return result; } } return setInitialValue(); } 复制代码
Handler发送消息
Handler简介:发送消息(创建Handler的线程或者其他线程)和处理消息(创建Handler的线程)
Handler.java
Handler初始化
///Handler的初始化,拿到当前的Looper和MessageQueue public Handler(Callback callback, boolean async) { if (FIND_POTENTIAL_LEAKS) { final Class<? extends Handler> klass = getClass(); if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) && (klass.getModifiers() & Modifier.STATIC) == 0) { Log.w(TAG, "The following Handler class should be static or leaks might occur: " + klass.getCanonicalName()); } } //获取当前线程的Looper mLooper = Looper.myLooper(); if (mLooper == null) { throw new RuntimeException( "Can't create handler inside thread that has not called Looper.prepare()"); } //获取当前线程的MessageQueue mQueue = mLooper.mQueue; mCallback = callback; mAsynchronous = async; } 复制代码
Looper.java
获取当前的线程已经创建的Looper.
/** * Return the Looper object associated with the current thread. Returns * null if the calling thread is not associated with a Looper. */ public static @Nullable Looper myLooper() { return sThreadLocal.get(); } 复制代码
Handler.java
mHandler.sendMessage();发送消息
/** * Pushes a message onto the end of the message queue after all pending messages * before the current time. It will be received in {@link #handleMessage}, * in the thread attached to this handler. * * @return Returns true if the message was successfully placed in to the * message queue. Returns false on failure, usually because the * looper processing the message queue is exiting. */ public final boolean sendMessage(Message msg) { return sendMessageDelayed(msg, 0); } /** * Enqueue a message into the message queue after all pending messages * before (current time + delayMillis). You will receive it in * {@link #handleMessage}, in the thread attached to this handler. * * @return Returns true if the message was successfully placed in to the * message queue. Returns false on failure, usually because the * looper processing the message queue is exiting. Note that a * result of true does not mean the message will be processed -- if * the looper is quit before the delivery time of the message * occurs then the message will be dropped. */ public final boolean sendMessageDelayed(Message msg, long delayMillis) { if (delayMillis < 0) { delayMillis = 0; } return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis); } /** * Enqueue a message into the message queue after all pending messages * before the absolute time (in milliseconds) <var>uptimeMillis</var>. * <b>The time-base is {@link android.os.SystemClock#uptimeMillis}.</b> * Time spent in deep sleep will add an additional delay to execution. * You will receive it in {@link #handleMessage}, in the thread attached * to this handler. * * @param uptimeMillis The absolute time at which the message should be * delivered, using the * {@link android.os.SystemClock#uptimeMillis} time-base. * * @return Returns true if the message was successfully placed in to the * message queue. Returns false on failure, usually because the * looper processing the message queue is exiting. Note that a * result of true does not mean the message will be processed -- if * the looper is quit before the delivery time of the message * occurs then the message will be dropped. */ public boolean sendMessageAtTime(Message msg, long uptimeMillis) { MessageQueue queue = mQueue; if (queue == null) { RuntimeException e = new RuntimeException( this + " sendMessageAtTime() called with no mQueue"); Log.w("Looper", e.getMessage(), e); return false; } return enqueueMessage(queue, msg, uptimeMillis); } private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) { msg.target = this; if (mAsynchronous) { msg.setAsynchronous(true); } //Handler发送消息,最后其实是放入到了创建Handler线程对应的MessageQueue里面 return queue.enqueueMessage(msg, uptimeMillis); } 复制代码
MessageQueue 存储和获取消息
MessageQueue 简介:负责线程的消息管理,内部存储Message使用链表数据结构
MessageQueue.java
//向MessageQueue 放入一条消息 boolean enqueueMessage(Message msg, long when) { if (msg.target == null) { throw new IllegalArgumentException("Message must have a target."); } if (msg.isInUse()) { throw new IllegalStateException(msg + " This message is already in use."); } synchronized (this) { if (mQuitting) { IllegalStateException e = new IllegalStateException( msg.target + " sending message to a Handler on a dead thread"); Log.w(TAG, e.getMessage(), e); msg.recycle(); return false; } msg.markInUse(); msg.when = when; Message p = mMessages; boolean needWake; if (p == null || when == 0 || when < p.when) { // New head, wake up the event queue if blocked. msg.next = p; mMessages = msg; needWake = mBlocked; } else { // Inserted within the middle of the queue. Usually we do not have to wake // up the event queue unless there is a barrier at the head of the queue // and the message is the earliest asynchronous message in the queue. needWake = mBlocked && p.target == null && msg.isAsynchronous(); Message prev; for (;;) { prev = p; p = p.next; if (p == null || when < p.when) { break; } if (needWake && p.isAsynchronous()) { needWake = false; } } //当前消息存放到链表中 msg.next = p; // invariant: p == prev.next prev.next = msg; } // We can assume mPtr != 0 because mQuitting is false. if (needWake) { nativeWake(mPtr); } } return true; } //从MessageQueue获取一条消息 Message next() { // Return here if the message loop has already quit and been disposed. // This can happen if the application tries to restart a looper after quit // which is not supported. final long ptr = mPtr; if (ptr == 0) { return null; } int pendingIdleHandlerCount = -1; // -1 only during first iteration int nextPollTimeoutMillis = 0; //获取消息可能是阻塞的,会一直循环等待新的消息。Looper.loop(); for (;;) { if (nextPollTimeoutMillis != 0) { Binder.flushPendingCommands(); } nativePollOnce(ptr, nextPollTimeoutMillis); synchronized (this) { // Try to retrieve the next message. Return if found. final long now = SystemClock.uptimeMillis(); Message prevMsg = null; Message msg = mMessages; if (msg != null && msg.target == null) { // Stalled by a barrier. Find the next asynchronous message in the queue. do { prevMsg = msg; msg = msg.next; } while (msg != null && !msg.isAsynchronous()); } if (msg != null) { if (now < msg.when) { // Next message is not ready. Set a timeout to wake up when it is ready. nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE); } else { // Got a message. mBlocked = false; if (prevMsg != null) { prevMsg.next = msg.next; } else { mMessages = msg.next; } msg.next = null; if (DEBUG) Log.v(TAG, "Returning message: " + msg); msg.markInUse(); //返回从链表里获取到的Message return msg; } } else { // No more messages. nextPollTimeoutMillis = -1; } // Process the quit message now that all pending messages have been handled. if (mQuitting) { dispose(); return null; } // If first time idle, then get the number of idlers to run. // Idle handles only run if the queue is empty or if the first message // in the queue (possibly a barrier) is due to be handled in the future. if (pendingIdleHandlerCount < 0 && (mMessages == null || now < mMessages.when)) { pendingIdleHandlerCount = mIdleHandlers.size(); } if (pendingIdleHandlerCount <= 0) { // No idle handlers to run. Loop and wait some more. mBlocked = true; continue; } if (mPendingIdleHandlers == null) { mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)]; } mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers); } // Run the idle handlers. // We only ever reach this code block during the first iteration. for (int i = 0; i < pendingIdleHandlerCount; i++) { final IdleHandler idler = mPendingIdleHandlers[i]; mPendingIdleHandlers[i] = null; // release the reference to the handler boolean keep = false; try { keep = idler.queueIdle(); } catch (Throwable t) { Log.wtf(TAG, "IdleHandler threw exception", t); } if (!keep) { synchronized (this) { mIdleHandlers.remove(idler); } } } // Reset the idle handler count to 0 so we do not run them again. pendingIdleHandlerCount = 0; // While calling an idle handler, a new message could have been delivered // so go back and look again for a pending message without waiting. nextPollTimeoutMillis = 0; } } 复制代码
Looper.loop()如何分发消息
Looper进行无限循环,如果从MessageQueue获取到消息,则回调到Handler的handleMessage(msg)去处理
Looper.java
Looper.loop()后都做做了什么?
/** * Run the message queue in this thread. Be sure to call * {@link #quit()} to end the loop. */ public static void loop() { final Looper me = myLooper(); if (me == null) { throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread."); } final MessageQueue queue = me.mQueue; // Make sure the identity of this thread is that of the local process, // and keep track of what that identity token actually is. Binder.clearCallingIdentity(); final long ident = Binder.clearCallingIdentity(); //进行无限循环,从MessageQueue中获取数据 for (;;) { //从MessageQueue中获取Message,如果当前MessageQueue里面没有消息,next()方法是阻塞的。 Message msg = queue.next(); // might block if (msg == null) { // No message indicates that the message queue is quitting. return; } // This must be in a local variable, in case a UI event sets the logger final Printer logging = me.mLogging; if (logging != null) { logging.println(">>>>> Dispatching to " + msg.target + " " + msg.callback + ": " + msg.what); } final long slowDispatchThresholdMs = me.mSlowDispatchThresholdMs; final long traceTag = me.mTraceTag; if (traceTag != 0 && Trace.isTagEnabled(traceTag)) { Trace.traceBegin(traceTag, msg.target.getTraceName(msg)); } final long start = (slowDispatchThresholdMs == 0) ? 0 : SystemClock.uptimeMillis(); final long end; try { //获取到Message则分发到Handler进行处理 msg.target.dispatchMessage(msg); end = (slowDispatchThresholdMs == 0) ? 0 : SystemClock.uptimeMillis(); } finally { if (traceTag != 0) { Trace.traceEnd(traceTag); } } if (slowDispatchThresholdMs > 0) { final long time = end - start; if (time > slowDispatchThresholdMs) { Slog.w(TAG, "Dispatch took " + time + "ms on " + Thread.currentThread().getName() + ", h=" + msg.target + " cb=" + msg.callback + " msg=" + msg.what); } } if (logging != null) { logging.println("<<<<< Finished to " + msg.target + " " + msg.callback); } // Make sure that during the course of dispatching the // identity of the thread was not corrupted. final long newIdent = Binder.clearCallingIdentity(); if (ident != newIdent) { Log.wtf(TAG, "Thread identity changed from 0x" + Long.toHexString(ident) + " to 0x" + Long.toHexString(newIdent) + " while dispatching to " + msg.target.getClass().getName() + " " + msg.callback + " what=" + msg.what); } msg.recycleUnchecked(); } } 复制代码
Handler.java
/** * Handle system messages here. */ public void dispatchMessage(Message msg) { if (msg.callback != null) { handleCallback(msg); } else { if (mCallback != null) { if (mCallback.handleMessage(msg)) { return; } } //4.回调Handler的handleMessage(); 完整的消息分发至此完成。 handleMessage(msg); } } 复制代码
Q&A
- looper.loop()方法是阻塞的,主线程为什么还可以执行其他函数(Activity生命周期回调等等)?
通过主线程的handler发送Message到主线程MessageQueue。Looper.loop()获取到Message,然后回调handler.handleMessage()方法去执行各种事件回调(Activity生命周期回调等等)。详细自行查看ActivityThread.java类。 复制代码
- 线程间通信Handler核心点在哪里?
生产者(Handler任意线程生产)消费者(创建Looper线程消费)模式 复制代码
以上所述就是小编给大家介绍的《Andorid 线程间通信Handler原理(源码解析)》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!
猜你喜欢:- 【重回基础】线程池源码剖析:Worker工作线程
- Java 多线程(五)—— 线程池基础 之 FutureTask源码解析
- iOS源码解析:多线程
- JStorm 源码解析:基础线程模型
- EventBus源码剖析(3) — 线程模式
- 线程池的使用和源码剖析
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
Java程序设计与应用开发
於东军 / 清华大学出版社 / 2005-3 / 27.00元
本书作为Java程序的入门与应用教材,共分为3部分:第一部分讲解Java程序设计的基础知识,包括Java基本编程语言、面向对象设计思想、类、对象、接口以及异常处理。第二部分讲解Java程序设计的高级知识,包括:GUI编程、套接口编程、I/O系统、数据库访问以及多线程编程。第三部分详细分析一个实际项目的开发过程,包括系统分析及功能实现。在项目实例中综合应用第一、二部分的Java知识,能够帮助读者进一......一起来看看 《Java程序设计与应用开发》 这本书的介绍吧!