决策树相关算法——XGBoost原理分析及实例实现(三)

栏目: 编程工具 · 发布时间: 5年前

内容简介:此赛题的特征工程主要包括四个任务:特征选择一般的方式有:计算每一个特征与响应变量label的相关性,比如说计算互信息系数。训练能够对特征打分的预选模型:RandomForest和Logistic Regression等都能对模型的特征打分,通过打分获得相关性后再训练最终模型;包括行列信息,各列Variable缺失值情况,dtypes的值。

本篇博客作为前两篇XGBoost的原理与分析的续作三,主要记录的是使用XGBoost对kaggle中的初级赛题 Titanic: Machine Learning from Disaster 进行预测的实例,以此来加深自己对XGBoost库的使用。

前两篇XGBoost原理分析如下,本篇实例地址为 Github

决策树相关算法——XGBoost原理分析及实例实现(一)

决策树相关算法——XGBoost原理分析及实例实现(二)

2数据集分析

Titanic赛题的数据集需要到上述赛题地址下载,包括训练集train.csv中,测试集test.csv,最后赛题预测的答案集为gender_submission.csv。

决策树相关算法——XGBoost原理分析及实例实现(三)

给出的数据集的记录中有些Variable存在缺失,而且Variable的值存在离散型数据,连续型数据和字符串数据。这些在训练模型之前都需要进行处理,首先对赛题给出的数据进行分析,提取出要训练的模型特征。

3特征工程

此赛题的特征工程主要包括四个任务: 数据缺失值处理连续型数据特征值处理字符串型数据特征值处理预测模型的特征选择 。接下来这3个任务将贯穿整个特征工程的过程。

特征选择一般的方式有:计算每一个特征与响应变量label的相关性,比如说计算互信息系数。训练能够对特征打分的预选模型:RandomForest和Logistic Regression等都能对模型的特征打分,通过打分获得相关性后再训练最终模型;

3.1查看数据整体信息

包括行列信息,各列Variable缺失值情况,dtypes的值。

###### in
import numpy as np
import pandas as pd
train = pd.read_csv("ML/data/Titanic/train.csv")
test = pd.read_csv("ML/data/Titanic/test.csv")
full_data = [train,test]
print(train.info())
###### out
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
PassengerId    891 non-null int64
Survived       891 non-null int64
Pclass         891 non-null int64
Name           891 non-null object
Sex            891 non-null object
Age            714 non-null float64
SibSp          891 non-null int64
Parch          891 non-null int64
Ticket         891 non-null object
Fare           891 non-null float64
Cabin          204 non-null object
Embarked       889 non-null object
dtypes: float64(2), int64(5), object(5)
memory usage: 83.6+ KB
None

3.2根据train.csv中各个Variable的取值和特性进行数据处理

主要查看数据的各个Variable对Survived的影响来确定是否该Variable对生还有影响。 分析代码地址

1.PassengerId 和 Survived

Survived是模型最终需要预测的Label,给定的数据集该Variable值没有缺失。PassengerId是各个乘客的ID,每个ID号各不相同,基本没有什么数据挖掘意义,对需要预测的存活性几乎没有影响。

2.Pclass

pclass为船票类型,离散数据(不需要进行特别处理),没有缺失值。该变量的取值情况如下。

###### in
print (train['Pclass'].value_counts(sort=False).sort_index())
###### out
1    216
2    184
3    491
###### Pclass和Survived的影响
#计算出每个Pclass属性的取值中存活的人的比例
print train[['Pclass','Survived']].groupby('Pclass',as_index=False).mean()
###### out
   Pclass  Survived
0       1  0.629630
1       2  0.472826
2       3  0.242363

从输出的生还率可以看出,不同的Pclass类型对生还率影响还是很大的,所以选取该属性作为最终的模型的特征之一,取值为1,2,3.

3.Sex

Sex为性别,连续型数据特征,没有缺失值。该变量的取值情况如下。

###### in
print (train['Sex'].value_counts(sort=False).sort_index())
###### out
female    314
male      577
###### Sex和Survived的影响
#计算出每个Sex属性的取值中存活的人的比例
print train[['Sex','Survived']].groupby('Sex',as_index=False).mean()
###### out
      Sex  Survived
0  female  0.742038
1    male  0.188908

从输出的生还率可以看出,不同的Sex类型对生还率影响还是很大的,所以选取该属性作为最终的模型.对于字符串数据特征值的处理,可以将两个字符串值映射到两个数值0,1上。

4.Age

Age为年龄,连续型数据, Age 714 non-null float64 该属性包含较多的缺失值,不宜删除缺失值所在的行的数据记录。此处不仅需要对缺失值进行处理,而且需要对该连续型数据进行处理。

1.对于该属性的缺失值处理:方法一,默认填充值的范围[(mean - std) ,(mean + std)]。方法二,将缺失的Age当做label,将其他列的属性当做特征,通过已有的Age的记录训练模型,来预测缺失的Age值。

2.对该连续型数据进行处理:常用的方法有两种,方法一,等距离划分。方法二,通过卡方检验/信息增益/GINI系数寻找差异较大的分裂点。

###对于该属性的缺失值处理方式一,方式二在最终的代码仓库中
for dataset in full_data:
    age_avg = dataset['Age'].mean()
    age_std = dataset['Age'].std()
    
    age_null_count = dataset['Age'].isnull().sum()
    age_default_list = np.random.randint(low=age_avg-age_std,high=age_avg+age_std,size=age_null_count,)
    
    dataset['Age'][np.isnan(dataset['Age'])] = age_default_list
    dataset['Age'] = dataset['Age'].astype(int)
###对该连续型数据进行处理方式二
train['CategoricalAge'] = pd.cut(train['Age'], 5)
print (train[['CategoricalAge', 'Survived']].groupby(['CategoricalAge'], as_index=False).mean())
###### out
  CategoricalAge  Survived
0  (-0.08, 16.0]  0.532710
1   (16.0, 32.0]  0.360802
2   (32.0, 48.0]  0.360784
3   (48.0, 64.0]  0.434783
4   (64.0, 80.0]  0.090909

可以看出对连续型特征Age离散化处理后,各个年龄阶段的存活率还是有差异的,所以可以选取CategoricalAge作为最终模型的一个特征。

5.SibSp and Parch

SibSp和Parch分别为同船的兄弟姐妹和父母子女数,离散数据,没有缺失值。于是可以根据该人的家庭情况组合出不同的特征。

###### SibSp对Survived的影响
print train[['SibSp','Survived']].groupby('SibSp',as_index=False).mean()
###### Parch对Survived的影响
print train[['Parch','Survived']].groupby('Parch',as_index=False).mean()
###### Parch和SibSp组合对Survived的影响
for dataset in full_data:
    dataset['FamilySize'] = dataset['SibSp'] + dataset['Parch'] + 1
print (train[['FamilySize', 'Survived']].groupby(['FamilySize'], as_index=False).mean())
###### 是否为一个人IsAlone对Survived的影响
train['IsAlone'] = 0
train.loc[train['FamilySize']==1,'IsAlone'] = 1
print (train[['IsAlone', 'Survived']].groupby(['IsAlone'], as_index=False).mean())
###### out 1
   SibSp  Survived 
0      0  0.345395
1      1  0.535885
2      2  0.464286
3      3  0.250000
4      4  0.166667
5      5  0.000000
6      8  0.000000
###### out 2
   Parch  Survived
0      0  0.343658
1      1  0.550847
2      2  0.500000
3      3  0.600000
4      4  0.000000
5      5  0.200000
6      6  0.000000
###### out 3
0           1  0.303538
1           2  0.552795
2           3  0.578431
3           4  0.724138
4           5  0.200000
5           6  0.136364
6           7  0.333333
7           8  0.000000
8          11  0.000000
###### out 4
   IsAlone  Survived
0        0  0.505650
1        1  0.303538

从输出的生还率可以看出,可以选取的模型特征有Parch和SibSp组合特征FamilySize,Parch,SibSp,IsAlone该四个特征的取值都为离散值。

6.Ticket和Cabin

Ticket为船票号码,每个ID的船票号不同,难以进行数据挖掘,所以该列可以舍弃。Cabin为客舱号码, 204 non-null object 对于891条数据记录来说,缺失巨大,难以进行填充或者说进行缺失值补充带来的噪音将更多,所以可以考虑放弃该列。

7.Fare

Fare为船票售价,连续型数据,没有缺失值,需要对该属性值进行离散化处理。

for dataset in full_data:
    dataset['Fare'] = dataset['Fare'].fillna(train['Fare'].median())
train['CategoricalFare'] = pd.qcut(train['Fare'],6)
print (train[['CategoricalFare', 'Survived']].groupby(['CategoricalFare'], as_index=False).mean())
###### out
     CategoricalFare  Survived
0    (-0.001, 7.775]  0.205128
1     (7.775, 8.662]  0.190789
2    (8.662, 14.454]  0.366906
3     (14.454, 26.0]  0.436242
4     (26.0, 52.369]  0.417808
5  (52.369, 512.329]  0.697987

可以看出对连续型特征Fare离散化处理后,各个票价阶段的存活率还是有差异的,所以可以选取CategoricalFare作为最终模型的一个特征。此时分为了6个等样本数阶段。

8.Embarked

Embarked是终点城市,字符串型特征值, 889 non-null object 对于891个数据记录来说,缺失数极小,所以这里考虑使用该属性最多的值填充。

print (train['Embarked'].value_counts(sort=False).sort_index())
###### out
C    168
Q     77
S    644
Name: Embarked, dtype: int64
#### 填充和探索Embarked对Survived的影响
for data in full_data:
    data['Embarked'] = data['Embarked'].fillna('S')
print (train['Embarked'].value_counts(sort=False).sort_index())
print (train[['Embarked', 'Survived']].groupby(['Embarked'], as_index=False).mean())
###### out1
C    168
Q     77
S    646
Name: Embarked, dtype: int64
  Embarked  Survived
0        C  0.553571
1        Q  0.389610
2        S  0.339009

可以看出不同的Embarked类型对存活率的影响有差异,所以可以选择该列作为最终模型的特征,由于该属性的值是字符型,还需要进行映射处理或者one-hot处理。

9.Name

Name为姓名,字符型特征值,没有缺失值,需要对字符型特征值进行处理。但是观察到Name的取值都是不相同,但其中发现Name的title name是存在类别的关系的。于是可以对Name进行提取出称呼这一类别title name.

import re
def get_title_name(name):
    title_s = re.search(' ([A-Za-z]+)\.', name)
    if title_s:
        return title_s.group(1)
    return ""
for dataset in full_data:
    dataset['TitleName'] = dataset['Name'].apply(get_title_name)
print(pd.crosstab(train['TitleName'],train['Sex']))
###### out
Sex        female  male
TitleName              
Capt            0     1
Col             0     2
Countess        1     0
Don             0     1
Dr              1     6
Jonkheer        0     1
Lady            1     0
Major           0     2
Master          0    40
Miss          182     0
Mlle            2     0
Mme             1     0
Mr              0   517
Mrs           125     0
Ms              1     0
Rev             0     6
Sir             0     1
####可以看出不同的titlename中男女还是有区别的。进一步探索titlename对Survived的影响。
####看出上面的离散取值范围还是比较多,所以可以将较少的几类归为一个类别。
train['TitleName'] = train['TitleName'].replace('Mme', 'Mrs')
train['TitleName'] = train['TitleName'].replace('Mlle', 'Miss')
train['TitleName'] = train['TitleName'].replace('Ms', 'Miss')
train['TitleName'] = train['TitleName'].replace(['Lady', 'Countess','Capt', 'Col',\
     'Don', 'Dr', 'Major', 'Rev', 'Sir', 'Jonkheer', 'Dona'], 'Other')
print (train[['TitleName', 'Survived']].groupby(['TitleName'], as_index=False).mean())
###### out1
  TitleName  Survived
0    Master  0.575000
1      Miss  0.702703
2        Mr  0.156673
3       Mrs  0.793651
4     Other  0.347826

可以看出TitleName对存活率还是有影响差异的,TitleName总共为了5个类别:Mrs,Miss,Master,Mr,Other。

3.3赛题的特征提取总结

此赛题是计算每一个属性与响应变量label的影响(存活率)来查看是否选择该属性作为最后模型的输入特征。最后选取出的模型输入特征有 Pclass , Sex , CategoricalAge , FamilySize , Parch , SibSp , IsAlone , CategoricalFare , Embarked , TitleName

最后对上述分析进行统一的数据清洗,将train.csv和test.csv统一进行处理,得出新的模型训练样本集。

4XGBoost模型训练

4.1数据清洗和特征选择

此步骤主要是根据3中的数据分析来进行编写的。着重点Age的缺失值使用了两种方式进行填充。均值和通过其他清洗的数据特征使用随机森林预测缺失值两种方式。

def data_feature_engineering(full_data,age_default_avg=True,one_hot=True):
    """
    :param full_data:全部数据集包括train,test
    :param age_default_avg:age默认填充方式,是否使用平均值进行填充
    :param one_hot: Embarked字符处理是否是one_hot编码还是映射处理
    :return: 处理好的数据集
    """
    for dataset in full_data:
        # Pclass、Parch、SibSp不需要处理

        # sex 0,1
        dataset['Sex'] = dataset['Sex'].map(Passenger_sex).astype(int)

        # FamilySize
        dataset['FamilySize'] = dataset['SibSp'] + dataset['Parch'] + 1

        # IsAlone
        dataset['IsAlone'] = 0
        isAlone_mask = dataset['FamilySize'] == 1
        dataset.loc[isAlone_mask, 'IsAlone'] = 1

        # Fare 离散化处理,6个阶段
        fare_median = dataset['Fare'].median()
        dataset['CategoricalFare'] = dataset['Fare'].fillna(fare_median)
        dataset['CategoricalFare'] = pd.qcut(dataset['CategoricalFare'],6,labels=[0,1,2,3,4,5])

        # Embarked映射处理,one-hot编码,极少部分缺失值处理
        dataset['Embarked'] = dataset['Embarked'].fillna('S')
        dataset['Embarked'] = dataset['Embarked'].astype(str)
        if one_hot:
            # 因为OneHotEncoder只能编码数值型,所以此处使用LabelBinarizer进行独热编码
            Embarked_arr = LabelBinarizer().fit_transform(dataset['Embarked'])
            dataset['Embarked_0'] = Embarked_arr[:, 0]
            dataset['Embarked_1'] = Embarked_arr[:, 1]
            dataset['Embarked_2'] = Embarked_arr[:, 2]
            dataset.drop('Embarked',axis=1,inplace=True)
        else:
            # 字符串映射处理
            dataset['Embarked'] = dataset['Embarked'].map(Passenger_Embarked).astype(int)

        # Name选取称呼Title_name
        dataset['TitleName'] = dataset['Name'].apply(get_title_name)
        dataset['TitleName'] = dataset['TitleName'].replace('Mme', 'Mrs')
        dataset['TitleName'] = dataset['TitleName'].replace('Mlle', 'Miss')
        dataset['TitleName'] = dataset['TitleName'].replace('Ms', 'Miss')
        dataset['TitleName'] = dataset['TitleName'].replace(['Lady', 'Countess', 'Capt', 'Col', \
                                                             'Don', 'Dr', 'Major', 'Rev', 'Sir', 'Jonkheer', 'Dona'],
                                                            'Other')
        dataset['TitleName'] = dataset['TitleName'].map(Passenger_TitleName).astype(int)

        # age —— 缺失值,分段处理
        if age_default_avg:
            # 缺失值使用avg处理
            age_avg = dataset['Age'].mean()
            age_std = dataset['Age'].std()
            age_null_count = dataset['Age'].isnull().sum()
            age_default_list = np.random.randint(low=age_avg - age_std, high=age_avg + age_std, size=age_null_count)

            dataset.loc[np.isnan(dataset['Age']), 'Age'] = age_default_list
            dataset['Age'] = dataset['Age'].astype(int)
        else:
            # 将age作为label,预测缺失的age
            # 特征为 TitleName,Sex,pclass,SibSP,Parch,IsAlone,CategoricalFare,FamileSize,Embarked
            feature_list = ['TitleName', 'Sex', 'Pclass', 'SibSp', 'Parch', 'IsAlone','CategoricalFare',
                            'FamilySize', 'Embarked','Age']
            if one_hot:
                feature_list.append('Embarked_0')
                feature_list.append('Embarked_1')
                feature_list.append('Embarked_2')
                feature_list.remove('Embarked')
            Age_data = dataset.loc[:,feature_list]

            un_Age_mask = np.isnan(Age_data['Age'])
            Age_train = Age_data[~un_Age_mask] #要训练的Age

            # print(Age_train.shape)
            feature_list.remove('Age')
            rf0 = RandomForestRegressor(n_estimators=60,oob_score=True,min_samples_split=10,min_samples_leaf=2,
                                                                   max_depth=7,random_state=10)

            rf0.fit(Age_train[feature_list],Age_train['Age'])

            def set_default_age(age):
                if np.isnan(age['Age']):
                    # print(age['PassengerId'])
                    # print age.loc[feature_list]
                    data_x = np.array(age.loc[feature_list]).reshape(1,-1)
                    # print data_x
                    age_v = round(rf0.predict(data_x))
                    # print('pred:',age_v)
                    # age['Age'] = age_v
                    return age_v
                    # print age
                return age['Age']

            dataset['Age'] = dataset.apply(set_default_age, axis=1)
            # print(dataset.tail())
            #
            # data_age_no_full = dataset[dataset['Age'].]

        # pd.cut与pd.qcut的区别,前者是根据取值范围来均匀划分,
        # 后者是根据取值范围的各个取值的频率来换分,划分后的某个区间的频率数相同
        # print(dataset.tail())
        dataset['CategoricalAge'] = pd.cut(dataset['Age'], 5,labels=[0,1,2,3,4])
    return full_data
##特征选择
def data_feature_select(full_data):
    """
    :param full_data:全部数据集
    :return:
    """
    for data_set in full_data:
        drop_list = ['PassengerId','Name','Age','Fare','Ticket','Cabin']
        data_set.drop(drop_list,axis=1,inplace=True)
    train_y = np.array(full_data[0]['Survived'])
    train = full_data[0].drop('Survived',axis=1,inplace=False)
    # print(train.head())
    train_X = np.array(train)
    test_X = np.array(full_data[1])
    return train_X,train_y,test_X

4.2XGBoost参数介绍

要熟练的使用XGBoost库一方面需要对XGBoost原理的了解,另一方面需要对XGBoost库的API参数的了解。此处参考了别人的博客。

4.2.1通用参数

booster,基分类器的模型gbtree和gbliner

nthread,线程数

4.2.2booster参数(gbtree提升树对应的参数)

learning_rate,梯度下降的学习率,一般为0.01~0.2

min_child_weight,最小叶子节点样本权重和,用于避免过拟合,一般为1

max_depth,决策树的最大深度,默认为6

max_leaf_nodes,树上最大的叶子数量

gamma,节点分裂时候和损失函数变化相关,具体可参考XGBoost中决策树节点分裂时的代价函数的公式

subsample和colsample_bytree,随机森林中的两种随机,也是XGBoost中的trick,用于防止过拟合,值为0.5~1,随机采样所占比例,随机列采样比例。

lambda,L2正则化项,可调参实现。

scale_pos_weight,在各类别样本十分不平衡时,把这个参数设定为一个正值,可以使算法更快收敛。

4.2.3学习目标函数

objective,指定分类回归问题。如binary:logistic

eval_metric,评价指标

seeds随机数种子,调整参数时,随机取同样的样本集。

4.3XGBoost调参

主要是五个步骤,按照参数的重要性依次调整。

step1 确定学习速率和迭代次数n_estimators,即集分类器的数量

setp2 调试的参数是min_child_weight以及max_depth

step3 gamma参数调优

step4 调整subsample 和 colsample_bytree 参数

step5 正则化参数调优

def xgboost_change_param(train_X,train_y):
    # Xgboost 调参
    # step1 确定学习速率和迭代次数n_estimators,即集分类器的数量
    xgb1 = XGBClassifier(learning_rate=0.1,
                         booster='gbtree',
                                   n_estimators=300,
                                   max_depth=4,
                                   min_child_weight=1,
                                   gamma=0,
                                   subsample=0.8,
                                   colsample_bytree=0.8,
                                   objective='binary:logistic',
                                   nthread=2,
                                   scale_pos_weight=1,
                                   seed=10
                                   )
    #最佳 n_estimators = 59 ,learning_rate=0.1
    modelfit(xgb1,train_X,train_y,early_stopping_rounds=45)

    # setp2 调试的参数是min_child_weight以及max_depth
    param_test1 = {
        'max_depth': range(3,8,1),
        'min_child_weight':range(1,6,2)
    }
    gsearch1 = GridSearchCV(estimator=XGBClassifier(learning_rate=0.1,n_estimators=59,
                                                    max_depth=4,min_child_weight=1,gamma=0,
                                                    subsample=0.8,colsample_bytree=0.8,
                                                    objective='binary:logistic',nthread=2,
                                                    scale_pos_weight=1,seed=10
                                                    ),
                            param_grid=param_test1,
                            scoring='roc_auc',n_jobs=1,cv=5)
    gsearch1.fit(train_X,train_y)
    print gsearch1.best_params_,gsearch1.best_score_
    # 最佳 max_depth = 7 ,min_child_weight=3
    # modelfit(gsearch1.best_estimator_) 最佳模型为:gsearch1.best_estimator_

    # step3 gamma参数调优
    param_test2 = {
        'gamma': [i/10.0 for i in range(0,5)]
    }
    gsearch2 = GridSearchCV(estimator=XGBClassifier(learning_rate=0.1,n_estimators=59,
                                                    max_depth=7,min_child_weight=3,gamma=0,
                                                    subsample=0.8,colsample_bytree=0.8,
                                                    objective='binary:logistic',nthread=2,
                                                    scale_pos_weight=1,seed=10),
                            param_grid=param_test2,
                            scoring='roc_auc',
                            cv=5
                            )
    gsearch2.fit(train_X, train_y)
    print gsearch2.best_params_, gsearch2.best_score_
    # 最佳 gamma=0.3
    # modelfit(gsearch2.best_estimator_)

    #step4 调整subsample 和 colsample_bytree 参数
    param_test3 = {
        'subsample': [i / 10.0 for i in range(6, 10)],
        'colsample_bytree': [i / 10.0 for i in range(6, 10)]
    }
    gsearch3 = GridSearchCV(estimator=XGBClassifier(learning_rate=0.1,n_estimators=59,
                                                    max_depth=7,min_child_weight=3,gamma=0.3,
                                                    subsample=0.8,colsample_bytree=0.8,
                                                    objective='binary:logistic',nthread=2,
                                                    scale_pos_weight=1,seed=10),
                            param_grid=param_test3,
                            scoring='roc_auc',
                            cv=5
                            )
    gsearch3.fit(train_X, train_y)
    print gsearch3.best_params_, gsearch3.best_score_
    # 最佳'subsample': 0.8, 'colsample_bytree': 0.6

    # step5 正则化参数调优

4.4XGBoost训练

待XGBoost调参结束后选择合适的参数,训练模型。

train = pd.read_csv(train_file)
test = pd.read_csv(test_file)
test_y = pd.read_csv(test_result_file)

full_data = [train,test]

# train.apply(axis=0)

full_data = data_feature_engineering(full_data,age_default_avg=True,one_hot=False)
train_X, train_y, test_X = data_feature_select(full_data)

# XGBoost调参
# xgboost_change_param(train_X,train_y)

xgb1 = XGBClassifier(learning_rate=0.1,n_estimators=59,
                    max_depth=7,min_child_weight=3,
                    gamma=0.3,subsample=0.8,
                    colsample_bytree=0.6,objective='binary:logistic',
                    nthread=2,scale_pos_weight=1,seed=10)
xgb1.fit(train_X,train_y)

y_test_pre = xgb1.predict(test_X)
y_test_true = np.array(test_y['Survived'])
print ("the xgboost model Accuracy : %.4g" % metrics.accuracy_score(y_pred=y_test_pre, y_true=y_test_true))

以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

苹果的味道

苹果的味道

袁烨 / 2012-1 / 59.80元

《苹果的味道:iPad商务应用每一天》是一本介绍iPad商务应用的书。编者从App Store丰富的应用程序库中选取了MobileRSS、Pocket Informant HD、iWork、MindPad、乐顺笔记本等二十多款经典的应用程序,从商务资讯的获取、商务日程安排、商务文档的制作和演示等八个商务应用方面,以图文并茂的方式介绍了这些应用程序在商务工作中的使用方法。通过《苹果的味道:iPad商......一起来看看 《苹果的味道》 这本书的介绍吧!

HTML 编码/解码
HTML 编码/解码

HTML 编码/解码

RGB CMYK 转换工具
RGB CMYK 转换工具

RGB CMYK 互转工具

HSV CMYK 转换工具
HSV CMYK 转换工具

HSV CMYK互换工具