单类SVM:SVDD

栏目: 数据库 · 发布时间: 5年前

内容简介:话接上文(花果山上的老猴子,一生阅猴无数,但是从来没有见过其它的物种。有一天,猪八戒来到花果山找它们的大王,老猴子一声令下,把这个东西给我绑起来!这里老猴子很清楚的知道这个外来物种不是同类,但是它究竟是什么,不得而知。老猴子见过很多猴,它知道猴子的特征,而外来生物明显不符合这个特征,所以它就不是猴子。

话接上文( SVM的简单推导 ),这篇文章我们来看单类SVM:SVDD。可能大家会觉得很奇怪,我们为什么需要单分类呢? 有篇博客 举了一个很有意思的例子。

花果山上的老猴子,一生阅猴无数,但是从来没有见过其它的物种。有一天,猪八戒来到花果山找它们的大王,老猴子一声令下,把这个东西给我绑起来!

这里老猴子很清楚的知道这个外来物种不是同类,但是它究竟是什么,不得而知。老猴子见过很多猴,它知道猴子的特征,而外来生物明显不符合这个特征,所以它就不是猴子。

这就是一个单分类的简单例子。

而美猴王看到这个场景后,哈哈一笑,把这呆子抬过来!

对比二分类,显著的区别就是,二分类不但能得出来这个东西不是猴子,他还能告诉你这个东西叫“呆子”(当然我们的美猴王见多识广,肯定不止是二分类那么简单了)

今天要介绍的SVDD的全称是Support vector domain description。首先让我们简单了解一下domain description,也就是单分类问题。

单分类问题

不像常见的分类问题,单分类问题的目的并不时将不同类别的数据区分开来,而是对某个类别的数据生成一个描述(description)。这里的description比较抽象,可以理解为是样本空间中的一个区域,当某个样本落在这个区域外,我们就认为该样本不属于这个类别。

单类SVM:SVDD

单分类方法常用于异常检测,或者类别极度不平衡的分类任务中。

当我们假设数据服从一个概率分布,我们就可以对这个分布中的参数进行估计了。对于一个新样本,如果这个样本在给定类别的概率分布中的概率小于阈值,就会被判定为异常样本。

但是这样的方法存在的问题是,

  1. 预先假定的概率分布对模型性能的影响很大。
  2. 当特征的维度很大的时候,该方法需要一个很大的数据集。
  3. 一些低密度区域的样本点会被误判为异常样本。

另一种思路就是,在样本空间中为此类数据划定一个大致的边界。如何划定这个边界,就是SVDD要研究的问题啦。

目标函数

假设我们有$m$个样本点,分别为$x^{(1)},x^{(2)},\cdots,x^{(m)}$。

我们假设这些样本点分布在一个球心为$a$,半径为$R$的球中。那么样本$x^{(i)}$满足

$$ (x^{(i)}-a)^T(x^{(i)}-a)\leq R^2. $$

引入松弛变量,我们允许部分样本不再这个球中,那么

$$ (x^{(i)}-a)^T(x^{(i)}-a)\leq R^2+\xi_i,\xi\geq 0. $$

我们的目标是最小球的半径$R$和松弛变量的值,于是目标函数是

$$ \begin{align} \min_{a,\xi_i}\ \ & R^2+C\sum_{i=1}^m\xi_i\\ {\rm s.t.}\ \ & (x^{(i)}-a)^T(x^{(i)}-a)\leq R^2+\xi_i, \\ &\xi_i\geq 0,i=1,2,\cdots,m. \end{align} $$

其中,$C>0$是惩罚参数,由人工设置。

对偶问题

使用拉格朗日乘子法,得到拉格朗日函数

$$ \begin{align} L(R,a,\alpha,\xi,\gamma)=& R^2+C\sum_{i=1}^m\xi_i\\ & -\sum_{i=1}^m\alpha_i\left(R^2+\xi_i({x^{(i)}}^Tx^{(i)}-2a^Tx^{(i)}+a^2)\right)-\sum_{i=1}^m \gamma_i\xi_i. \end{align} $$

其中,$\alpha_i\ge 0,\gamma_i\ge 0$是拉格朗日乘子。令拉格朗日函数对$R,a,\xi_i$的偏导为0,得到

$$ \begin{align} &\sum_{i=1}^m \alpha_i=1,\\ &a=\sum_{i=1}^m \alpha_ix^{(i)},\\ &C-\alpha_i-\gamma_i=0 \end{align} $$

我们可以将$\alpha_i$看作样本$x^{(i)}$的权重。上式表明所有样本的权重之和为1,而球心$a$是所有样本的加权和。将上式带入到拉格朗日函数中,得到原问题的对偶问题

$$ \begin{align} \max_\alpha\ \ &L(\alpha)=\sum_{i=1}^m\alpha_i{x^{(i)}}^Tx^{(i)}-\sum_{i=1}^m\sum_{j=1}^m \alpha_i\alpha_j{x^{(i)}}^Tx^{(j)}\\ {\rm s.t.}\ \ & 0\le\alpha_i\le C,\\ & \sum_{i=1}^m\alpha_i=1,i=1,2,\cdots,m. \end{align} $$

当通过求解对偶问题得到$\alpha_i$后,可以通过$a=\sum_{i=1}^m \alpha_ix^{(i)}$计算球心$a$。至于半径$R$,则可以通过计算球与支持向量($\alpha_i< C$)之间的距离得到。当$\alpha_i=C$时,意味着样本$x^{(i)}$位于球的外面。

判断新样本是否为异常点

对于一个新的样本点$z$,如果它满足下式,那么我们认为它是一个异常点。

$$ (z-a)^T(z-a)> R^2. $$

展开上式,得

$$ z^Tz-2\sum_{i=1}^m \alpha_iz^Tx^{(i)}+\sum_{i=1}^m\sum_{j=1}^m\alpha_i\alpha_j{x^{(i)}}^Tx^{(j)}>R^2. $$

引入核函数

正常情况下,数据并不会呈现球状分布,因此有必要使用核函数的方法提高模型的表达能力。

只需将$\cal K(x^{(i)},x^{(j)})$替换${x^{(i)}}^Tx^{(j)}$即可。于是对偶问题的目标函数变为

$$ L(\alpha)=\sum_i \alpha_i\cal K(x^{(i)},x^{(i)})-\sum_i\sum_j \alpha_i\alpha_j\cal K(x^{(i)},x^{(j)}). $$

判别函数变为

$$ {\cal K}(z,z)-2\sum_i \alpha_i {\cal K}(z,x^{(i)})+\sum_i\sum_j \alpha_i\alpha_j {\cal K}(x^{(i)},x^{(j)})- R^2. $$

下面考虑核函数的影响。

多项式核

多项式核函数的表达式如下

$$ {\cal K}\left({x^{(i)}}^Tx^{(j)}\right)=\left({x^{(i)}}^Tx^{(j)}+1\right)^d. $$

如下图所示,多项式核实际上不太适合SVDD。特别是当d取值非常大的时候。

单类SVM:SVDD

高斯核

高斯核函数的表达式如下

$$ {\cal K}\left({x^{(i)}}^Tx^{(j)}\right)=\exp\left(\frac{-\left(x^{(i)}-x^{(j)}\right)^2}{s^2}\right). $$

如下图,相比于多项式核函数,高斯核函数的结果就合理多了。可以看到模型的复杂程度随着$s$的增大而减小。

单类SVM:SVDD

python 中使用

可通过下面的代码在python中使用单类SVM

from sklearn.svm import OneClassSVM

参考文献

  1. Tax D M J, Duin R P W. Support vector domain description[J]. Pattern recognition letters, 1999, 20(11-13): 1191-1199.

以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Programming Concurrency on the JVM

Programming Concurrency on the JVM

Venkat Subramaniam / The Pragmatic Bookshelf / 2011-6-1 / USD 35.00

Concurrency on the Java platform has evolved, from the synchronization model of JDK to software transactional memory (STM) and actor-based concurrency. This book is the first to show you all these con......一起来看看 《Programming Concurrency on the JVM》 这本书的介绍吧!

SHA 加密
SHA 加密

SHA 加密工具

UNIX 时间戳转换
UNIX 时间戳转换

UNIX 时间戳转换

RGB CMYK 转换工具
RGB CMYK 转换工具

RGB CMYK 互转工具