内容简介:OpenCV+Python实现运动模糊,主要用到的函数是cv2.filter2D():原图与运动模糊效果如下:
运动模糊: 由于相机和物体之间的相对运动造成的模糊,又称为动态模糊
OpenCV+Python实现运动模糊,主要用到的函数是cv2.filter2D():
# coding: utf-8 import numpy as np import cv2 def motion_blur(image, degree=12, angle=45): image = np.array(image) # 这里生成任意角度的运动模糊kernel的矩阵, degree越大,模糊程度越高 M = cv2.getRotationMatrix2D((degree / 2, degree / 2), angle, 1) motion_blur_kernel = np.diag(np.ones(degree)) motion_blur_kernel = cv2.warpAffine(motion_blur_kernel, M, (degree, degree)) motion_blur_kernel = motion_blur_kernel / degree blurred = cv2.filter2D(image, -1, motion_blur_kernel) # convert to uint8 cv2.normalize(blurred, blurred, 0, 255, cv2.NORM_MINMAX) blurred = np.array(blurred, dtype=np.uint8) return blurred img = cv2.imread('linuxidc.com.jpg') img_ = motion_blur(img) cv2.imshow('Source image',img) cv2.imshow('blur image',img_) cv2.waitKey()
原图与运动模糊效果如下:
高斯模糊:图像与二维高斯分布的概率密度函数做卷积,模糊图像细节
OpenCV+Python实现高斯模糊,主要用到的函数是cv2.GaussianBlur():
# coding: utf-8 import numpy as np import cv2 img = cv2.imread('linuxidc.com.jpg') img_ = cv2.GaussianBlur(img, ksize=(9, 9), sigmaX=0, sigmaY=0) cv2.imshow('Source image',img) cv2.imshow('blur image',img_) cv2.waitKey()
高斯模糊效果如下:
更多 Python 相关信息见 Python 专题页面 https://www.linuxidc.com/topicnews.aspx?tid=17
Linux公社的RSS地址 : https://www.linuxidc.com/rssFeed.aspx
本文永久更新链接地址: https://www.linuxidc.com/Linux/2019-05/158653.htm
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网
猜你喜欢:- 如何基于深度学习实现图像
- 数字图像处理-前端实现
- 使用DCGAN实现人脸图像生成
- 通过迁移学习实现OCT图像识别
- ResNet图像识别与tensorflow实现
- 从基本概念到实现,全卷积网络实现更简洁的图像识别
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
UML用户指南
[美] Grady Booch、James Rumbaugh、Ivar Jacobson / 邵维忠、麻志毅、马浩海、刘辉 / 人民邮电出版社 / 2006-6 / 49.00元
《UML用户指南》(第2版)是UML方面最权威的一本著作,三位作者是面向对象方法最早的倡导者,是UML的创始人。本版涵盖了UML 2.0。书中为具体的UML特征提供了参考,描述了一个使用UML进行开发的过程,旨在让读者掌握UML的术语、规则和语言特点,以及如何有效地使用这种语言,知道如何应用UML去解决一些常见的建模问题。《UML用户指南》(第2版)由7个部分组成,而且每章都描述了一个特定UML特......一起来看看 《UML用户指南》 这本书的介绍吧!