OpenCV灰度图像直方图算法实现

栏目: 编程工具 · 发布时间: 6年前

内容简介:手动实现一个灰度直方图算法,过程很简单,主要有以下几步:1. 统计每一个像素灰度值2. 计算每个灰度值出现的概率

手动实现一个灰度直方图算法,过程很简单,主要有以下几步:

1. 统计每一个像素灰度值

2. 计算每个灰度值出现的概率

3. 横坐标 0-255

4. 纵坐标为概率P

直方图效果如下:

# 本质: 统计每一个像素灰度 出现的概率  横坐标 0-255 纵坐标 概率P
import cv2
import numpy as np
import matplotlib.pyplot as plt

img = cv2.imread('wwww.linuxidc.com.jpg', 1)
imgInfo = img.shape
height = imgInfo[0]
width = imgInfo[1]

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
count = np.zeros(256, np.float) # 因为是概率, 有可能是浮点数

# 统计像素个数并计算概率
for i in range(height):
    for j in range(width):
        pixel = gray[i, j]
        index = int(pixel)
        count[index] = count[index] + 1

total = height * width # 总像素个数
count =  count / total  # 计算概率

# 画图
x = np.linspace(0, 255, 256)
y = count
plt.bar(x, y, 0.9, alpha = 1, color = "b")
plt.show()

效果如下:

OpenCV灰度图像直方图算法实现

更多 Python 相关信息见 Python 专题页面 https://www.linuxidc.com/topicnews.aspx?tid=17

Linux公社的RSS地址https://www.linuxidc.com/rssFeed.aspx

本文永久更新链接地址: https://www.linuxidc.com/Linux/2019-05/158629.htm


以上所述就是小编给大家介绍的《OpenCV灰度图像直方图算法实现》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

算法时代

算法时代

Luke Dormehl / 胡小锐、钟毅 / 中信出版集团 / 2016-4-1 / CNY 59.00

世界上的一切事物都可以被简化成一个公式吗?数字可以告诉我们谁是适合我们的另一半,而且能和我们白头偕老吗?算法可以准确预测电影的票房收入,并且让电影更卖座吗?程序软件能预知谁将要实施犯罪,并且精确到案发时间吗?这些事听起来都像是科幻小说中的情节,但事实上,它们仅是日益被算法主宰的人类世界的“冰山一角”。 近年来随着大数据技术的快速发展,我们正在进入“算法经济时代”。每天,算法都会对展示在我们眼......一起来看看 《算法时代》 这本书的介绍吧!

随机密码生成器
随机密码生成器

多种字符组合密码

XML、JSON 在线转换
XML、JSON 在线转换

在线XML、JSON转换工具

Markdown 在线编辑器
Markdown 在线编辑器

Markdown 在线编辑器