内容简介:手动实现一个灰度直方图算法,过程很简单,主要有以下几步:1. 统计每一个像素灰度值2. 计算每个灰度值出现的概率
手动实现一个灰度直方图算法,过程很简单,主要有以下几步:
1. 统计每一个像素灰度值
2. 计算每个灰度值出现的概率
3. 横坐标 0-255
4. 纵坐标为概率P
直方图效果如下:
# 本质: 统计每一个像素灰度 出现的概率 横坐标 0-255 纵坐标 概率P
import cv2
import numpy as np
import matplotlib.pyplot as plt
img = cv2.imread('wwww.linuxidc.com.jpg', 1)
imgInfo = img.shape
height = imgInfo[0]
width = imgInfo[1]
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
count = np.zeros(256, np.float) # 因为是概率, 有可能是浮点数
# 统计像素个数并计算概率
for i in range(height):
for j in range(width):
pixel = gray[i, j]
index = int(pixel)
count[index] = count[index] + 1
total = height * width # 总像素个数
count = count / total # 计算概率
# 画图
x = np.linspace(0, 255, 256)
y = count
plt.bar(x, y, 0.9, alpha = 1, color = "b")
plt.show()
效果如下:
更多 Python 相关信息见 Python 专题页面 https://www.linuxidc.com/topicnews.aspx?tid=17
Linux公社的RSS地址 : https://www.linuxidc.com/rssFeed.aspx
本文永久更新链接地址: https://www.linuxidc.com/Linux/2019-05/158629.htm
以上所述就是小编给大家介绍的《OpenCV灰度图像直方图算法实现》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!
猜你喜欢:- 直方图反向投影算法介绍与实现
- OpenCV-图像处理(25、直方图比较)
- MySQL 8.0新特性之统计直方图
- MySQL 8.0 中统计信息直方图的尝试
- MySQL 8.0 中统计信息直方图的尝试
- 深入理解OpenCV+Python直方图均衡化
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
高性能JavaScript
Nicholas C.Zakas / 丁琛、赵泽欣 / 电子工业出版社 / 2010-11 / 49.00元
如果你使用JavaScript构建交互丰富的Web应用,那么JavaScript代码可能是造成你的Web应用速度变慢的主要原因。《高性能JavaScript》揭示的技术和策略能帮助你在开发过程中消除性能瓶颈。你将会了解如何提升各方面的性能,包括代码的加载、运行、DOM交互、页面生存周期等。雅虎的前端工程师Nicholas C. Zakas和其他五位JavaScript专家介绍了页面代码加载的最佳方......一起来看看 《高性能JavaScript》 这本书的介绍吧!