OpenCV灰度图像直方图算法实现

栏目: 编程工具 · 发布时间: 6年前

内容简介:手动实现一个灰度直方图算法,过程很简单,主要有以下几步:1. 统计每一个像素灰度值2. 计算每个灰度值出现的概率

手动实现一个灰度直方图算法,过程很简单,主要有以下几步:

1. 统计每一个像素灰度值

2. 计算每个灰度值出现的概率

3. 横坐标 0-255

4. 纵坐标为概率P

直方图效果如下:

# 本质: 统计每一个像素灰度 出现的概率  横坐标 0-255 纵坐标 概率P
import cv2
import numpy as np
import matplotlib.pyplot as plt

img = cv2.imread('wwww.linuxidc.com.jpg', 1)
imgInfo = img.shape
height = imgInfo[0]
width = imgInfo[1]

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
count = np.zeros(256, np.float) # 因为是概率, 有可能是浮点数

# 统计像素个数并计算概率
for i in range(height):
    for j in range(width):
        pixel = gray[i, j]
        index = int(pixel)
        count[index] = count[index] + 1

total = height * width # 总像素个数
count =  count / total  # 计算概率

# 画图
x = np.linspace(0, 255, 256)
y = count
plt.bar(x, y, 0.9, alpha = 1, color = "b")
plt.show()

效果如下:

OpenCV灰度图像直方图算法实现

更多 Python 相关信息见 Python 专题页面 https://www.linuxidc.com/topicnews.aspx?tid=17

Linux公社的RSS地址https://www.linuxidc.com/rssFeed.aspx

本文永久更新链接地址: https://www.linuxidc.com/Linux/2019-05/158629.htm


以上所述就是小编给大家介绍的《OpenCV灰度图像直方图算法实现》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

高性能JavaScript

高性能JavaScript

Nicholas C.Zakas / 丁琛、赵泽欣 / 电子工业出版社 / 2010-11 / 49.00元

如果你使用JavaScript构建交互丰富的Web应用,那么JavaScript代码可能是造成你的Web应用速度变慢的主要原因。《高性能JavaScript》揭示的技术和策略能帮助你在开发过程中消除性能瓶颈。你将会了解如何提升各方面的性能,包括代码的加载、运行、DOM交互、页面生存周期等。雅虎的前端工程师Nicholas C. Zakas和其他五位JavaScript专家介绍了页面代码加载的最佳方......一起来看看 《高性能JavaScript》 这本书的介绍吧!

HTML 压缩/解压工具
HTML 压缩/解压工具

在线压缩/解压 HTML 代码

JS 压缩/解压工具
JS 压缩/解压工具

在线压缩/解压 JS 代码

图片转BASE64编码
图片转BASE64编码

在线图片转Base64编码工具