多目标跟踪 近年论文及开源代码汇总

栏目: 数据库 · 发布时间: 5年前

内容简介:同时提供每月大咖直播分享、真实项目需求对接、干货资讯汇总,行业技术交流*延伸阅读

加入极市 专业CV交流群,与 6000+来自腾讯,华为,百度,北大,清华,中科院 等名企名校视觉开发者互动交流!更有机会与 李开复老师 等大牛群内互动!

同时提供每月大咖直播分享、真实项目需求对接、干货资讯汇总,行业技术交流 点击文末“ 阅读原文 ”立刻申请入群~

作者 |  ZihaoZhao

来源 | https://zhuanlan.zhihu.com/p/65177442

把最近几年的MOT论文和开源代码按时间顺序整理了一下,对14年之后的论文整理的比较详细,14年之前的比较简略,希望对大家有帮助。

论文的Short Name前带  ✔  的论文有代码,代码链接在论文链接之后。

这篇文章之后会持续更新最新的论文和代码。

另,MOT综述较少,Overview里也会列一些相关领域的综述。

Overview

Emami, P., Pardalos, P. M., Elefteriadou, L., & Ranka, S. (2018). Machine Learning Methods for Solving Assignment Problems in Multi-Target Tracking, 1(1), 1–35. Retrieved from  arxiv.org/abs/1802.06897

Leal-Taixé, L., Milan, A., Schindler, K., Cremers, D., Reid, I., & Roth, S. (2017). Tracking the Trackers: An Analysis of the State of the Art in Multiple Object Tracking, (March). Retrieved from  arxiv.org/abs/1704.0278

Luo, W., Xing, J., Milan, A., Zhang, X., Liu, W., Zhao, X., & Kim, T.-K. (2014). Multiple Object Tracking: A Literature Review, 1–18. Retrieved from arxiv.org/abs/1409.7618

Li, X., Hu, W., Shen, C., Zhang, Z., & Dick, A. (2013). A Survey of Appearance Models in Visual Object Tracking, 1–42.from  arxiv.org/pdf/1303.4803

Poore, A. B., & Gadaleta, S. (2006). Some assignment problems arising from multiple target tracking, 43, 1074–1091. from  doi.org/10.1016/j.mcm.2

Yilmaz, A., & Javed, O. (2006). Object Tracking : A Survey, 38(4). from  doi.org/10.1145/1177352

2019

✔FANTrack Baser, E., Balasubramanian, V., Bhattacharyya, P., & Czarnecki, K. (2019). FANTrack: 3D Multi-Object Tracking with Feature Association Network. Retrieved from  https://arxiv.org/abs/1905.02843    https://git.uwaterloo.ca/wise-lab/fantrack

FMA Zhang, J., Zhou, S., Wang, J., & Huang, D. (2019). Frame-wise Motion and Appearance for Real-time Multiple Object Tracking, (1). Retrieved from  arxiv.org/abs/1905.02292

FAMNet Chu, P., & Ling, H. (2019). FAMNet: Joint Learning of Feature, Affinity and Multi-dimensional Assignment for Online Multiple Object Tracking. Retrieved from  arxiv.org/abs/1904.04989

STRN Xu, J., Cao, Y., Zhang, Z., & Hu, H. (2019). Spatial-Temporal Relation Networks for Multi-Object Tracking. Retrieved from  arxiv.org/abs/1904.11489

IATracker Chu, P., Fan, H., Tan, C. C., & Ling, H. (2019). Online Multi-Object Tracking with Instance-Aware Tracker and Dynamic Model Refreshment. Retrieved from  arxiv.org/abs/1902.08231

LSST Feng, W., Hu, Z., Wu, W., Yan, J., & Ouyang, W. (2019). Multi-Object Tracking with Multiple Cues and Switcher-Aware Classification. LSST Retrieved from  arxiv.org/abs/1901.06129

✔NT Longyin Wen , Dawei Du , Shengkun Li, Xiao Bian, Siwei Lyu Learning Non-Uniform Hypergraph for Multi-Object Tracking, In AAAI 2019 from  http://www.cs.albany.edu/~lsw/papers/aaai19a.pdf  from  github.com/longyin880815

MOTS Voigtlaender, P., Krause, M., Osep, A., Luiten, J., Sekar, B. B. G., Geiger, A., & Leibe, B. (2019). MOTS: Multi-Object Tracking and Segmentation. Retrieved from  arxiv.org/abs/1902.03604

2018

DeepCC Ristani, E., & Tomasi, C. (2018). Features for Multi-Target Multi-Camera Tracking and Re-Identification. from  ieeexplore.ieee.org/document/8578730

SADF 48.3@17 Yoon, Y., Boragule, A., Song, Y., Yoon, K., & Jeon, M. (2018). Online Multi-Object Tracking with Historical Appearance Matching and Scene Adaptive Detection Filtering. from  ieeexplore.ieee.org/document/8639078

✔DAN(SST) Sun, S., Akhtar, N., Song, H., Mian, A., & Shah, M. (2018). Deep Affinity Network for Multiple Object Tracking,  13 (9), 1–15. Retrieved from  arxiv.org/abs/1810.11780  from  github.com/shijieS/SST

DMAN Zhu, J., Yang, H., Liu, N., Kim, M., Zhang, W., & Yang, M. H. (2018). Online Multi-Object Tracking with Dual Matching Attention Networks.  Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)11209 LNCS , 379–396. from  doi.org/10.1007/978-3-030-01228-1_23

TNT(TrackletNet Tracker) Wang, G., Wang, Y., Zhang, H., Gu, R., & Hwang, J.-N. (2018). Exploit the Connectivity: Multi-Object Tracking with TrackletNet. Retrieved from  arxiv.org/abs/1811.07258

CCC Keuper, M., Tang, S., Andres, B., Brox, T., & Schiele, B. (2018). Motion Segmentation & Multiple Object Tracking by Correlation Co-Clustering.  IEEE Transactions on Pattern Analysis and Machine Intelligence8828 (c), 1–13. from  doi.org/10.1109/TPAMI.2018.2876253

HAF Sheng, H., Zhang, Y., Chen, J., Xiong, Z., & Zhang, J. (2018). Heterogeneous Association Graph Fusion for Target Association in Multiple Object Tracking.  IEEE Transactions on Circuits and Systems for Video TechnologyXX (X). from  doi.org/10.1109/TCSVT.2018.2882192

TAT(Tracklet Association Tracker) Shen, H., Huang, L., Huang, C., & Xu, W. (2018). Tracklet Association Tracker: An End-to-End Learning-based Association Approach for Multi-Object Tracking. Retrieved from  arxiv.org/abs/1808.01562

Henschel, R., Leal-Taixe, L., Cremers, D., & Rosenhahn, B. (2018). Fusion of head and full-body detectors for multi-object tracking.  IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops2018June , 1509–1518. from  doi.org/10.1109/CVPRW.2018.00192

✔MOTBeyondPixels Sharma, S., Ansari, J. A., Murthy, J. K., & Krishna, K. M. (2018). Beyond Pixels: Leveraging Geometry and Shape Cues for Online Multi-Object Tracking. Retrieved from  arxiv.org/abs/1802.09298  from  github.com/JunaidCS032/MOTBeyondPixels

✔MOTDT Long Chen, Haizhou Ai, Zijie Zhuang, Chong Shang, Real-time Multiple People Tracking with Deeply Learned Candidate Selection and Person Re-Identification, ICME 2018 from  arxiv.org/abs/1809.04427  from  github.com/longcw/MOTDT

✔DetTA Breuers, S., Beyer, L., Rafi, U., & Leibe, B. (2018). Detection-Tracking for Efficient Person Analysis: The DetTA Pipeline. Retrieved from  arxiv.org/abs/1804.10134  from  github.com/sbreuers/detta

C-DRL Ren, L., Lu, J., Wang, Z., Tian, Q., & Zhou, J. (n.d.). Collaborative Deep Reinforcement Learning for Multi-Object Tracking, 1–17. from  openaccess.thecvf.com/content_ECCV_2018/papers/Liangliang_Ren_Collaborative_Deep_Reinforcement_ECCV_2018_paper.pdf

MHT-bLSTM Kim, C., Li, F., & Rehg, J. M. (n.d.). Multi-object Tracking with Neural Gating Using Bilinear LSTM. from  openaccess.thecvf.com/content_ECCV_2018/papers/Chanho_Kim_Multi-object_Tracking_with_ECCV_2018_paper.pdf

THOPA-net Fabbri, M., Lanzi, F., Calderara, S., & Vezzani, R. (2018). Learning to Detect and Track Visible and Occluded Body Joints in a Virtual World, (April). from  researchgate.net/publication/323957071_Learning_to_Detect_and_Track_Visible_and_Occluded_Body_Joints_in_a_Virtual_World

PHD Fang, K., Xiang, Y., Li, X., & Savarese, S. (2018). Recurrent Autoregressive Networks for Online Multi-Object Tracking.  WACV . from  yuxng.github.io/fang_wacv18.pdf

Ma, C., Yang, C., Yang, F., Zhuang, Y., Zhang, Z., Jia, H., & Xie, X. (2018). Trajectory Factory: Tracklet Cleaving and Re-connection by Deep Siamese Bi-GRU for Multiple Object Tracking. Retrieved from  arxiv.org/abs/1804.04555

Fernando, T., Denman, S., Sridharan, S., & Fookes, C. (2018). Tracking by Prediction: A Deep Generative Model for Mutli-Person localisation and Tracking. Retrieved from  arxiv.org/abs/1803.03347

2017

DeepNetworkFlows Schulter, S., Vernaza, P., Choi, W., & Chandraker, M. (2017). Deep network flow for multi-object tracking.  Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 20172017Janua , 2730–2739. from  doi.org/10.1109/CVPR.2017.292

✔DeepSORT Wojke, N., Bewley, A., & Paulus, D. (2017). Simple Online and Realtime Tracking with a Deep Association Metric.  Proceedings - International Conference on Image Processing, ICIP2017Septe , 3645–3649. from  doi.org/10.1109/ICIP.2017.8296962  from  github.com/nwojke/deep_sort

EAMTT Tang, S., Andriluka, M., Andres, B., & Schiele, B. (2017). Multiple people tracking by lifted multicut and person re-identification.  Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 20172017Janua , 3701–3710. from doi.org/10.1109/CVPR.2017.394

SOTforMOT He, Q., Wu, J., Yu, G., & Zhang, C. (2017). SOT for MOT. Retrieved from  arxiv.org/abs/1712.01059

✔NMGC-MOT Maksai, A., Wang, X., Fleuret, F., & Fua, P. (2017). Non-Markovian Globally Consistent Multi-Object Tracking.  Iccv 2017 , 2544–2554. Retrieved from  openaccess.thecvf.com/content_ICCV_2017/papers/Maksai_Non-Markovian_Globally_Consistent_ICCV_2017_paper.pdf   from   github.com/maksay/ptrack_cpp

STAM(spatial- temporal attention mechanism) Chu, Q., Ouyang, W., Li, H., Wang, X., Liu, B., & Yu, N. (2017). Online Multi-object Tracking Using CNN-Based Single Object Tracker with Spatial-Temporal Attention Mechanism.  Proceedings of the IEEE International Conference on Computer Vision2017Octob , 4846–4855. from  doi.org/10.1109/ICCV.2017.518

Sadeghian, A., Alahi, A., & Savarese, S. (2017). Tracking the Untrackable: Learning to Track Multiple Cues with Long-Term Dependencies.  Proceedings of the IEEE International Conference on Computer Vision2017Octob , 300–311. from  doi.org/10.1109/ICCV.2017.41

Quad-CNN Son, J., Baek, M., Cho, M., & Han, B. (2017). Multi-object tracking with quadruplet convolutional neural networks.  Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 20172017Janua , 3786–3795. from  doi.org/10.1109/CVPR.2017.403

✔IOUTracker Bochinski, E., Eiselein, V., & Sikora, T. (2017). High-Speed tracking-by-detection without using image information.  2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance, AVSS 2017 , (August). from  doi.org/10.1109/AVSS.2017.8078516  from  github.com/bochinski/iou-tracker/

✔RNN_LSTM Milan, A., Rezatofighi, S. H., Dick, A., Reid, I., & Schindler, K. (2017). Online Multi-Target Tracking Using Recurrent Neural Networks. AAAI 2017 from  arxiv.org/abs/1604.03635  from  bitbucket.org/amilan/rnntracking

✔D2T Feichtenhofer, C., Pinz, A., & Zisserman, A. (2017). Detect to Track and Track to Detect.  Proceedings of the IEEE International Conference on Computer Vision2017Octob , 3057–3065. from  doi.org/10.1109/ICCV.2017.330  from  github.com/feichtenhofer/Detect-Track

✔RCMSS Naiel, M. A., Ahmad, M. O., Swamy, M. N. S., Lim, J., & Yang, M. H. (2017). Online multi-object tracking via robust collaborative model and sample selection.  Computer Vision and Image Understanding154 , 94–107. from  doi.org/10.1016/j.cviu.2016.07.003  from  users.encs.concordia.ca/~rcmss/

✔towards-reid-tracking Beyer, L., Breuers, S., Kurin, V., & Leibe, B. (2017). Towards a Principled Integration of Multi-Camera Re-Identification and Tracking through Optimal Bayes Filters. Retrieved from  arxiv.org/abs/1705.04608  from  github.com/VisualComputingInstitute/towards-reid-tracking

✔CIWT Aljoˇsa Oˇsep, Alexander Hermans Combined Image and World-Space Tracking in Traffic Scenes In ICRA 2017 from  vision.rwth-aachen.de/media/papers/paper_final_compressed.pdf  from  github.com/aljosaosep/ciwt

2016

MTMCT Ristani, E., Solera, F., Zou, R. S., Cucchiara, R., & Tomasi, C. (2016). Performance Measures and a Data Set for Multi-Target, Multi-Camera Tracking.  Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)9914 LNCS (c), 17–35. from  doi.org/10.1007/978-3-319-48881-3_2

CPD(Changing Point Detection) Lee, B., Erdenee, E., Jin, S., & Rhee, P. K. (2016). Multi-Class Multi-Object Tracking using Changing Point Detection, (Mcmc). from  doi.org/10.1007/978-3-319-48881-3

POI Yu, F., Li, W., Li, Q., Liu, Y., Shi, X., & Yan, J. (2016). POI: Multiple Object Tracking with High Performance Detection and Appearance Feature.  Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)9914 LNCS , 36–42. from  doi.org/10.1007/978-3-319-48881-3_3

Social-LSTM Goel, K., Fei-Fei, L., Savarese, S., Alahi, A., Robicquet, A., & Ramanathan, V. (2016). Social LSTM: Human Trajectory Prediction in Crowded Spaces.  2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) , 961–971. from  doi.org/10.1109/cvpr.2016.110

MOT16 Milan, A., Leal-Taixe, L., Reid, I., Roth, S., & Schindler, K. (2016). MOT16: A Benchmark for Multi-Object Tracking, 1–12. Retrieved from  arxiv.org/abs/1603.00831

✔SORT Bewley, A., Ge, Z., Ott, L., Ramos, F., & Upcroft, B. (2016). Simple online and realtime tracking.  Proceedings - International Conference on Image Processing, ICIP2016Augus , 3464–3468. from  doi.org/10.1109/ICIP.2016.7533003  from  github.com/abewley/sort

ArtTrack Insafutdinov, E., Andriluka, M., Pishchulin, L., Tang, S., Levinkov, E., Andres, B., & Schiele, B. (2016). ArtTrack: Articulated Multi-person Tracking in the Wild, 1–12. Retrieved from  arxiv.org/abs/1612.01465

2015

Fagot-bouquet, L., Audigier, R., Dhome, Y., & Multi-person, F. L. O. (2018). Online Multi-person Tracking Based on Global Sparse Collaborative Representations, ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7328364 from  https://ieeexplore.ieee.org/document/7351235

Behavior-CNN Rohrbach, A., Rohrbach, M., Hu, R., Darrell, T., & Schiele, B. (2015). Pedestrian Behavior Understanding and Prediction with Deep Neural Networks.  1511.03745V19905 (c), 1–10. from  doi.org/10.1007/978-3-319-46448-0_49

MOT15 Leal-Taixé, L., Milan, A., Reid, I., Roth, S., & Schindler, K. (2015). MOTChallenge 2015: Towards a Benchmark for Multi-Target Tracking, 1–15. Retrieved from  arxiv.org/abs/1504.01942

JPDArevisited Rezatofighi, S. H., Milan, A., Zhang, Z., Shi, Q., Dick, A., & Reid, I. (2015). Modified Joint Probabilistic Data Association.  IEEE International Conference on Computer Vision (ICCV) , (December), 6615–6620. from  doi.org/10.1109/ICCV.2015.349

ALFD Choi, W. (2015). Near-online multi-target tracking with aggregated local flow descriptor.  Proceedings of the IEEE International Conference on Computer Vision2015 Inter , 3029–3037. from  doi.org/10.1109/ICCV.2015.347

✔MDP Xiang, Y., Alahi, A., & Savarese, S. (2015). Learning to Track: Online Multi-object Tracking by Decision Making. In  2015 IEEE International Conference on Computer Vision (ICCV) (pp. 4705–4713). IEEE. from  doi.org/10.1109/ICCV.2015.534  from  cvgl.stanford.edu/projects/MDP_tracking/

Fagot-Bouquet, L., Audigier, R., Dhome, Y., & Lerasle, F. (2015). Online multi-person tracking based on global sparse collaborative representations. In  2015 IEEE International Conference on Image Processing (ICIP) (pp. 2414–2418). IEEE. from  doi.org/10.1109/ICIP.2015.7351235

✔MHTrevisited Vinet, L., & Zhedanov, A. (2015). Multiple Hypothesis Tracking Revisited Chanho,  22 (4), 625–638. from  doi.org/10.1088/1751-8113/44/8/085201  from  rehg.org/mht/

✔TMPORT Ristani, E., & Tomasi, C. (2015). Tracking multiple people online and in real time.  Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)9007 , 444–459. from  doi.org/10.1007/978-3-319-16814-2_29  from  vision.cs.duke.edu/DukeMTMC/

✔LDCT Solera, F. (2015). Learning to Divide and Conquer for Online Multi-Target Tracking.  2015 IEEE International Conference on Computer Vision (ICCV) , 4373–4381. from  github.com/francescosolera/LDCT  from  imagelab.ing.unimore.it/imagelab/researchActivity.asp?idActivity=09

✔headTracking Zhang, S., Wang, J., Wang, Z., Gong, Y., & Liu, Y. (2015). Multi-target tracking by learning local-to-global trajectory models.  Pattern Recognition48 (2), 580–590. from  doi.org/10.1016/j.patcog.2014.08.013  from github.com/gengshan-y/headTracking

2014

✔CMOT Bae, S. H., & Yoon, K. J. (2014). Robust online multi-object tracking based on tracklet confidence and online discriminative appearance learning.  Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition , 1218–1225. from  doi.org/10.1109/CVPR.2014.159  from  cvl.gist.ac.kr/project/cmot.html

Tang, S., Andriluka, M., & Schiele, B. (2014). Detection and tracking of occluded people.  International Journal of Computer Vision110 (1), 58–69. from  doi.org/10.1007/s11263-013-0664-6

✔H2T Wen, L., Li, W., Yan, J., Lei, Z., Yi, D., & Li, S. Z. (2014). Multiple target tracking based on undirected hierarchical relation hypergraph.  Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition , 1282–1289. from  doi.org/10.1109/CVPR.2014.167  from  cbsr.ia.ac.cn/users/lywen/

Yang, B., & Nevatia, R. (2014). Multi-target tracking by online learning a CRF model of appearance and motion patterns.  International Journal of Computer Vision107 (2), 203–217. from  doi.org/10.1007/s11263-013-0666-4

✔CEM Chari, V., Lacoste-Julien, S., Laptev, I., & Sivic, J. (2014). On Pairwise Costs for Network Flow Multi-Object Tracking. Retrieved from  arxiv.org/abs/1408.3304  from  milanton.de/contracking/

✔OPCNF Chari, V., Lacoste-Julien, S., Laptev, I., & Sivic, J. (2014). Continuous Energy Minimization for Multi-Target Tracking, TPAMI 2014 from  milanton.de/files/pami2014/pami2014-anton.pdf  from  di.ens.fr/willow/research/flowtrack/

2013

Milan, A., Schindler, K., & Roth, S. (2013). Detection- and trajectory-level exclusion in multiple object tracking.  Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition , 3682–3689. from  doi.org/10.1109/CVPR.2013.472

Salvi, D., Waggoner, J., Temlyakov, A., & Wang, S. (2013). A graph-based algorithm for multi-target tracking with occlusion.  Proceedings of IEEE Workshop on Applications of Computer Vision , 489–496. from  doi.org/10.1109/WACV.2013.6475059

✔SMOT Dicle, C., Camps, O. I., & Sznaier, M. (2013). The way they move: Tracking multiple targets with similar appearance.  Proceedings of the IEEE International Conference on Computer Vision , 2304–2311. from  doi.org/10.1109/ICCV.2013.286 from bitbucket.org/cdicle/smot

2012

Yan, X., Wu, X., Kakadiaris, I. A., & Shah, S. K. (2012). To Track or To Detect ? An Ensemble Framework for Optimal Selection, 594–607.from  link.springer.com/conter/10.1007%2F978-3-642-33715-4_43

✔GMCP-Tracker Zamir, A. R., Dehghan, A., & Shah, M. (2012). GMCP-Tracker : Global Multi-object Tracking Using Generalized Minimum Clique Graphs, 343–356.from  crcv.ucf.edu/papers/eccv2012/GMCP-Tracker_ECCV12.pdf  from  crcv.ucf.edu/projects/GMCP-Tracker/

Hu, W., Li, X., Luo, W., Zhang, X., Maybank, S., & Zhang, Z. (2012). Single and multiple object tracking using log-euclidean riemannian subspace and block-division appearance model.  IEEE Transactions on Pattern Analysis and Machine Intelligence34 (12), 2420–2440. from  doi.org/10.1109/TPAMI.2012.42

Yang, B., & Nevatia, R. (2012). Online learned discriminative part-based appearance models for multi-human tracking.  Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)7572 LNCS (PART 1), 484–498. from  doi.org/10.1007/978-3-642-33718-5_35

Shu, G., Dehghan, A., Oreifej, O., Hand, E., & Shah, M. (2012). Part-based multiple-person tracking with partial occlusion handling.  Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition , 1815–1821. from  doi.org/10.1109/CVPR.2012.6247879

✔OMPTTH Zhang, J., Lo Presti, L., & Sclaroff, S. (2012). Online multi-person tracking by tracker hierarchy.  Proceedings - 2012 IEEE 9th International Conference on Advanced Video and Signal-Based Surveillance, AVSS 2012 , 379–385. from  doi.org/10.1109/AVSS.2012.51  from  cs-people.bu.edu/jmzhang/tracker_hierarchy/Tracker_Hierarchy.htm

2011

Andriyenko, A., Roth, S., & Schindler, K. (2011). An analytical formulation of global occlusion reasoning for multi-target tracking.  Proceedings of the IEEE International Conference on Computer Vision , (November), 1839–1846. from  doi.org/10.1109/ICCVW.2011.6130472

Andriyenko, A., & Schindler, K. (2011). Multi-target tracking by continuous energy minimization. In  CVPR 2011 (pp. 1265–1272). IEEE. from  doi.org/10.1109/CVPR.2011.5995311

Pirsiavash, H., Ramanan, D., & Fowlkes, C. (2011). Globally-Optimal Greedy Algorithms for Tracking a Variable Number of Objects.  Cvpr .from  people.csail.mit.edu/hpirsiav/papers/tracking_cvpr11.pdf

✔KSP Berclaz. (2011). Multiple Object Tracking using K-shortes Paths.  PAMI Preprint , 1–14. from  cvlab.epfl.ch/files/content/sites/cvlab2/files/publications/publications/2011/BerclazFTF11.pdf from cvlab.epfl.ch/software/ksp

2010

Mitzel, D., Horbert, E., Ess, A., & Leibe, B. (2010). Multi-person tracking with sparse detection and continuous segmentation.  Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)6311 LNCS (PART 1), 397–410. from  doi.org/10.1007/978-3-642-15549-9_29

MTDF Pedro F. Felzenszwalb, Ross B. Girshick, D. M. and D. R. (2010). Object detection with discriminatively trained part-based models. in TPAMI 2010.  doi.org/10.1109/MC.2014.42

2009

Hu, M., Ali, S., & Shah, M. (2009). Detecting global motion patterns in complex videos, 1–5. from  doi.org/10.1109/icpr.2008.4760950

Breitenstein, M. D., Reichlin, F., Leibe, B., Koller-Meier, E., & Van Gool, L. (2009). Robust tracking-by-detection using a detector confidence particle filter.  Proceedings of the IEEE International Conference on Computer Vision , (Iccv), 1515–1522. from  doi.org/10.1109/ICCV.2009.5459278

2008

M. IsardM. Isard, & J. M. (2008). B. A. B. M.-B. T. (application/pdf オブジェクト). R. from users.dickinson.edu/~jmac/publications/bramble.pdf ., & J. MacCormick. (2008). BraMBLe: A Bayesian Multiple-Blob Tracker (application/pdf オブジェクト). Retrieved from users.dickinson.edu/~jmac/publications/bramble.pdf

Zhang, L., Li, Y., & Nevatia, R. (2008). Global data association for multi-object tracking using network flows.  26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR . from doi.org/10.1109/CVPR.2008.4587584

还有一些对多目标跟踪的论文总结也很棒,推荐给大家。

http://bbs.cvmart.net/articles/265

github.com/huanglianghua/mot-papers/blob/master/README.md

*延伸阅读

点击左下角 阅读原文 ”, 即可申请加入极市 目标跟踪、目标检测、工业检测、人脸方向、视觉竞赛等技术交流群, 更有每月大咖直播分享、真实项目需求对接、干货资讯汇总,行业技术交流, 一起来让思想之光照的更远吧~

多目标跟踪 近年论文及开源代码汇总

觉得有用麻烦给个在看啦~    多目标跟踪 近年论文及开源代码汇总


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

创业小败局

创业小败局

创业家、i黑马 / 时代华文书局 / 2014-8-1 / 42.00元

让别人的失败,成为你的成功之母! 《创业小败局》由徐小平、何伯权等六位经验丰富的业界大佬,从《创业家》五年来跟踪的数千个创业案例中,精心挑选而来。21个最具代表性的失败案例,每个案例都代表了一种最常见的失败规律,也基本上覆盖了当下中国创业浪潮中,最容易遭遇的创业陷阱。失 败是有规律的。有时候创业者的选择和 行为,必然会导致失败,但当事人却因为缺乏经验而没有察觉。比如在错误心态下引入错误的合伙......一起来看看 《创业小败局》 这本书的介绍吧!

RGB转16进制工具
RGB转16进制工具

RGB HEX 互转工具

html转js在线工具
html转js在线工具

html转js在线工具

RGB HSV 转换
RGB HSV 转换

RGB HSV 互转工具