内容简介:前文「插入操作该操作其实就是红黑树的插入节点操作。
前文「 JDK源码分析-TreeMap(1) 」分析了 TreeMap 的一些方法,本文分析其中的增删方法。这也是红黑树插入和删除节点的操作,由于相对复杂,因此单独进行分析。
插入操作
该操作其实就是红黑树的插入节点操作。 前面分析过, 红黑树是一种平衡二叉树,新增 节点后 可能导致其失去平衡,因此需要对其进行修复操作以维持其平衡性。插入操作的 代码如下:
<span><span>public</span> V put(K key, V value) {</span>
<span> Entry<K,V> t = root;</span>
<span> <span>// 若 root 节点为空,则直接插入(为根节点)</span></span>
<span> <span>if</span> (t == <span>null</span>) {</span>
<span> compare(key, key); <span>// type (and possibly null) check</span></span>
<span> root = <span>new</span> Entry<>(key, value, <span>null</span>);</span>
<span> size = <span>1</span>;</span>
<span> modCount++;</span>
<span> <span>return</span> <span>null</span>;</span>
<span> }</span>
<span> int cmp;</span>
<span> Entry<K,V> <span>parent</span>;</span>
<span> <span>// split comparator and comparable paths</span></span>
<span> <span>// 拆分 Comparator 接口和 Comparable 接口(上文 getEntry 方法也是如此)</span></span>
<span> Comparator<span><?</span> super K> cpr = comparator;</span>
<span> <span>if</span> (cpr != <span>null</span>) {</span>
<span> <span>do</span> {</span>
<span> <span>parent</span> = t;</span>
<span> cmp = cpr.compare(key, t.key);</span>
<span> <span>if</span> (cmp < <span>0</span>)</span>
<span> t = t.left;</span>
<span> <span>else</span> <span>if</span> (cmp > <span>0</span>)</span>
<span> t = t.right;</span>
<span> <span>else</span></span>
<span> <span>// 若key已存在,则替换其对应的value</span></span>
<span> <span>return</span> t.setValue(value);</span>
<span> } <span>while</span> (t != <span>null</span>);</span>
<span> }</span>
<span> <span>else</span> {</span>
<span> <span>if</span> (key == <span>null</span>)</span>
<span> <span>throw</span> <span>new</span> NullPointerException();</span>
<span> @SuppressWarnings(<span>"unchecked"</span>)</span>
<span> Comparable<span><?</span> super K> k = (Comparable<span><?</span> super K>) key;</span>
<span> <span>do</span> {</span>
<span> <span>parent</span> = t;</span>
<span> cmp = k.compareTo(t.key);</span>
<span> <span>if</span> (cmp < <span>0</span>)</span>
<span> t = t.left;</span>
<span> <span>else</span> <span>if</span> (cmp > <span>0</span>)</span>
<span> t = t.right;</span>
<span> <span>else</span></span>
<span> <span>return</span> t.setValue(value);</span>
<span> } <span>while</span> (t != <span>null</span>);</span>
<span> }</span>
<span> Entry<K,V> e = <span>new</span> Entry<>(key, value, <span>parent</span>);</span>
<span> <span>if</span> (cmp < <span>0</span>)</span>
<span> <span>parent</span>.left = e;</span>
<span> <span>else</span></span>
<span> <span>parent</span>.right = e;</span>
<span> <span>// 插入节点后的平衡性调整</span></span>
<span> fixAfterInsertion(e);</span>
<span> size++;</span>
<span> modCount++;</span>
<span> <span>return</span> <span>null</span>;</span>
<span>}</span>
对应的几种插入节点修复操作前文「 数据结构与算法笔记(四) 」 已进行了分析 ,为了便于分析和理解代码,这里把图再贴一下(下图为关注节点的父节点是其祖父节点的左子节点的情况,在右边时操作类似):
case1: 关注节点 a 的叔叔节点为红色
case2: 关注节点为 a, 它的叔叔节点 d 是黑色,a 是其父节点 b 的右子节点
case3: 关注节点是 a,它的叔叔节点 d 是黑色,a 是其父节点 b 的左子节点
插入操作的平衡调整代码如下:
<span><span><span>private</span> <span>void</span> <span>fixAfterInsertion</span>(<span>Entry<K,V> x</span>)</span> {</span>
<span> <span>// 新插入的节点为红色</span></span>
<span> x.color = RED;</span>
<span> <span>// 只有在父节点为红色时需要进行插入修复操作</span></span>
<span> <span>while</span> (x != <span>null</span> && x != root && x.parent.color == RED) {</span>
<span> <span>// 下面两种情况是左右对称的</span></span>
<span> <span>// x 的父节点是它祖父节点的左子节点</span></span>
<span> <span>if</span> (parentOf(x) == leftOf(parentOf(parentOf(x)))) {</span>
<span> <span>// 叔叔节点</span></span>
<span> Entry<K,V> y = rightOf(parentOf(parentOf(x)));</span>
<span> <span>// case1</span></span>
<span> <span>if</span> (colorOf(y) == RED) {</span>
<span> setColor(parentOf(x), BLACK);</span>
<span> setColor(y, BLACK);</span>
<span> setColor(parentOf(parentOf(x)), RED);</span>
<span> x = parentOf(parentOf(x));</span>
<span> } <span>else</span> {</span>
<span> <span>// case2</span></span>
<span> <span>if</span> (x == rightOf(parentOf(x))) {</span>
<span> x = parentOf(x);</span>
<span> rotateLeft(x);</span>
<span> }</span>
<span> <span>// case3</span></span>
<span> setColor(parentOf(x), BLACK);</span>
<span> setColor(parentOf(parentOf(x)), RED);</span>
<span> rotateRight(parentOf(parentOf(x)));</span>
<span> }</span>
<span> } </span>
<span> <span>// x 的父节点是它祖父节点的右子节点(与上面情况对称)</span></span>
<span> <span>else</span> {</span>
<span> Entry<K,V> y = leftOf(parentOf(parentOf(x)));</span>
<span> <span>if</span> (colorOf(y) == RED) {</span>
<span> setColor(parentOf(x), BLACK);</span>
<span> setColor(y, BLACK);</span>
<span> setColor(parentOf(parentOf(x)), RED);</span>
<span> x = parentOf(parentOf(x));</span>
<span> } <span>else</span> {</span>
<span> <span>if</span> (x == leftOf(parentOf(x))) {</span>
<span> x = parentOf(x);</span>
<span> rotateRight(x);</span>
<span> }</span>
<span> setColor(parentOf(x), BLACK);</span>
<span> setColor(parentOf(parentOf(x)), RED);</span>
<span> rotateLeft(parentOf(parentOf(x)));</span>
<span> }</span>
<span> }</span>
<span> }</span>
<span> root.color = BLACK;</span>
<span>}</span>
对称情况下的相应操作不再分析,其原理是类似的。
删除操作
remove() 方法:
public V remove(Object key) {
Entry<K,V> p = getEntry(key);
if (p == null)
return null;
V oldValue = p.value;
deleteEntry(p);
return oldValue;
}
内部实现方法如下:
<span><span>/**</span></span>
<span><span> * Delete node p, and then rebalance the tree.</span></span>
<span><span> */</span></span>
<span><span>private</span> void deleteEntry(Entry<K,V> p) {</span>
<span> modCount++;</span>
<span> size--;</span>
<span> <span>// If strictly internal, copy successor's element to p and then make p</span></span>
<span> <span>// point to successor.</span></span>
<span> <span>// 左右子树都不为空,寻找后继节点</span></span>
<span> <span>if</span> (p.left != <span>null</span> && p.right != <span>null</span>) {</span>
<span> Entry<K,V> s = successor(p);</span>
<span> p.key = s.key;</span>
<span> p.value = s.value;</span>
<span> p = s;</span>
<span> } <span>// p has 2 children</span></span>
<span> <span>// Start fixup at replacement node, if it exists.</span></span>
<span> Entry<K,V> replacement = (p.left != <span>null</span> ? p.left : p.right);</span>
<span> <span>if</span> (replacement != <span>null</span>) {</span>
<span> <span>// Link replacement to parent</span></span>
<span> replacement.<span>parent</span> = p.<span>parent</span>;</span>
<span> <span>if</span> (p.<span>parent</span> == <span>null</span>)</span>
<span> root = replacement;</span>
<span> <span>else</span> <span>if</span> (p == p.<span>parent</span>.left)</span>
<span> p.<span>parent</span>.left = replacement;</span>
<span> <span>else</span></span>
<span> p.<span>parent</span>.right = replacement;</span>
<span> <span>// Null out links so they are OK to use by fixAfterDeletion.</span></span>
<span> p.left = p.right = p.<span>parent</span> = <span>null</span>;</span>
<span> <span>// Fix replacement</span></span>
<span> <span>if</span> (p.color == BLACK)</span>
<span> fixAfterDeletion(replacement);</span>
<span> } <span>else</span> <span>if</span> (p.<span>parent</span> == <span>null</span>) { <span>// return if we are the only node.</span></span>
<span> <span>// 只有一个根节点</span></span>
<span> root = <span>null</span>;</span>
<span> } <span>else</span> { <span>// No children. Use self as phantom replacement and unlink.</span></span>
<span> <span>if</span> (p.color == BLACK)</span>
<span> fixAfterDeletion(p);</span>
<span> <span>if</span> (p.<span>parent</span> != <span>null</span>) {</span>
<span> <span>if</span> (p == p.<span>parent</span>.left)</span>
<span> p.<span>parent</span>.left = <span>null</span>;</span>
<span> <span>else</span> <span>if</span> (p == p.<span>parent</span>.right)</span>
<span> p.<span>parent</span>.right = <span>null</span>;</span>
<span> p.<span>parent</span> = <span>null</span>;</span>
<span> }</span>
<span> }</span>
<span>}</span>
几种删除操作情况如下(下图为关注节点为父节点的左子节点的情况,关注节点为父节点的右子节点情况时的操作对称):
case1: 关注 节点的兄弟节点是红色
case2: 关注 节点的兄弟节点是黑色,且兄弟节点的子节点都是黑色
case3: 关注 节点的兄弟节点是黑色,且左子节点是红色、右子节点是黑色
case4: 关注 节点的兄弟节点是黑色,且右子节点是红色、左子节点是黑色
勘误 :前文「 数据结构与算法笔记(四) 」对红黑树删除操作第四种情况的分析不够准确,近两天又参考了其他文章及代码,这里的 case4 是目前经分析认为比较准确的(符合 JDK 1.8 源码中 TreeMap 的实现思路)。
PS: 别人的资料也未必都正确,不可全信,包括本文,还是要持有怀疑精神的。
删除操作的平衡调整代码如下:
private void fixAfterDeletion(Entry<K,V> x) {
// x 不为根节点,且颜色为黑色
while (x != root && colorOf(x) == BLACK) {
// x 是父节点的左子节点
if (x == leftOf(parentOf(x))) {
// 兄弟节点
Entry<K,V> sib = rightOf(parentOf(x));
// case1 待删除节点的兄弟节点为红色
if (colorOf(sib) == RED) {
setColor(sib, BLACK);
setColor(parentOf(x), RED);
rotateLeft(parentOf(x));
sib = rightOf(parentOf(x));
}
// case2 待删除节点的兄弟节点的子节点都为黑色
if (colorOf(leftOf(sib)) == BLACK && colorOf(rightOf(sib)) == BLACK) {
setColor(sib, RED);
x = parentOf(x);
} else {
// case3 待删除节点的兄弟节点的左子节点为红色、右子节为黑色
if (colorOf(rightOf(sib)) == BLACK) {
setColor(leftOf(sib), BLACK);
setColor(sib, RED);
rotateRight(sib);
sib = rightOf(parentOf(x));
}
// case4 待删除节点的兄弟节点的左子节点为黑色、右子节为红色
setColor(sib, colorOf(parentOf(x)));
setColor(parentOf(x), BLACK);
setColor(rightOf(sib), BLACK); //??
rotateLeft(parentOf(x));
x = root;
}
}
// x 是父节点的右子节点(对称操作)
else { // symmetric
Entry<K,V> sib = leftOf(parentOf(x));
if (colorOf(sib) == RED) {
setColor(sib, BLACK);
setColor(parentOf(x), RED);
rotateRight(parentOf(x));
sib = leftOf(parentOf(x));
}
if (colorOf(rightOf(sib)) == BLACK &&
colorOf(leftOf(sib)) == BLACK) {
setColor(sib, RED);
x = parentOf(x);
} else {
if (colorOf(leftOf(sib)) == BLACK) {
setColor(rightOf(sib), BLACK);
setColor(sib, RED);
rotateLeft(sib);
sib = leftOf(parentOf(x));
}
setColor(sib, colorOf(parentOf(x)));
setColor(parentOf(x), BLACK);
setColor(leftOf(sib), BLACK);
rotateRight(parentOf(x));
x = root;
}
}
}
setColor(x, BLACK);
}
插入和删除操作相对复杂,容易被绕晕,但其实也是有规律可循的。对比操作的图解,可以更容易分析和理解。
参考文章:
https: //zhuanlan.zhihu.com/p/22800206
这篇文章介绍了红黑树的删除操作,逻辑清晰,推荐阅读。
相关阅读:
Stay hungry, stay foolish.
以上所述就是小编给大家介绍的《JDK 源码分析:TreeMap(二)》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!
猜你喜欢:- 以太坊源码分析(36)ethdb源码分析
- [源码分析] kubelet源码分析(一)之 NewKubeletCommand
- libmodbus源码分析(3)从机(服务端)功能源码分析
- [源码分析] nfs-client-provisioner源码分析
- [源码分析] kubelet源码分析(三)之 Pod的创建
- Spring事务源码分析专题(一)JdbcTemplate使用及源码分析
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
Cyberwar
Kathleen Hall Jamieson / Oxford University Press / 2018-10-3 / USD 16.96
The question of how Donald Trump won the 2016 election looms over his presidency. In particular, were the 78,000 voters who gave him an Electoral College victory affected by the Russian trolls and hac......一起来看看 《Cyberwar》 这本书的介绍吧!