内容简介:假设你有一个很长的花坛,一部分地块种植了花,另一部分却没有。可是,花卉不能种植在相邻的地块上,它们会争夺水源,两者都会死去。给定一个花坛(表示为一个数组包含0和1,其中0表示没种植花,1表示种植了花),和一个数 n 。能否在不打破种植规则的情况下种入 n 朵花?能则返回True,不能则返回False。示例 1:
LeetCode 605. 种花问题
假设你有一个很长的花坛,一部分地块种植了花,另一部分却没有。可是,花卉不能种植在相邻的地块上,它们会争夺水源,两者都会死去。
给定一个花坛(表示为一个数组包含0和1,其中0表示没种植花,1表示种植了花),和一个数 n 。能否在不打破种植规则的情况下种入 n 朵花?能则返回True,不能则返回False。
示例 1:
输入: flowerbed = [1,0,0,0,1], n = 1
输出: True
示例 2:
输入: flowerbed = [1,0,0,0,1], n = 2
输出: False
注意:
数组内已种好的花不会违反种植规则。
输入的数组长度范围为 [1, 20000]。
n 是非负整数,且不会超过输入数组的大小。
我的思路
总的来讲,这道题在leetCode 中不算难的,关键就是要有思路。下面是我自己做题时的分析。
1. 在两边都是花 中间都是空地的情况下(关键前提) ,算出可以种花的最值。如[1,0,0,0,0,1]=>1
连续空地数 可种花的最值 0 => 0 1 => 0 2 => 0 3 => 1 4 => 1 5 => 2 6 => 2 7 => 3
有感觉的老哥 ,估计已经有了想法,没错就是
parseInt((n - 1) / 2 ) = 可以种几颗 // (n为最近两个花 之间的空地数量)
得出了这个结论 就基本完成了 但是还有2种特殊情况,以下是完整代码(战胜84%的js提交)
let canPlaceFlowers = (flowerbed, n) => { let filedBegin = flowerbed[0] > 0 ? true : false; let filedEnd = flowerbed[flowerbed.length - 1] > 0 ? true : false; if (!filedBegin) { flowerbed.unshift(1, 0) } if (!filedEnd) { flowerbed.push(0, 1) } //上面步骤的原因 // 遇到这两种情况[0, 0, 1, 0, 0] 或者[0] // 按照parseInt((n - 1) / 2) 规则得出的都是零 因为这种算法 是以 两边都是花的情况下的结果 // 而上面这两种 0的两面 或者有一面 是没有花的 所以手动 给他们加上 // [0, 0, 1, 0, 0]=> [1, 0, 0, 1, 0, 0, 0, 1] // [0]=> [1, 0, 0, 0, 1] // 这样就符合我们的规则了 let size = 0 //最近两个花 之间的空地数量 let canfiled = 0 //可以种植的数量 for (let i = 1, len = flowerbed.length; i < len; i++) { if (flowerbed[i] > 0) {// if (size == 0) continue //说明 处在 1 1 相邻的情况 直接跳过 let num = parseInt((size - 1) / 2) // 当前间隔最多可以种植的数量 canfiled += num size = 0 //重置间隔数量 } else {//当前是空地 空地数量+1 size++ } } return canfiled >= n };
2.最快的范例
var canPlaceFlowers = function (flowerbed, n) { // 定义一个sum = 0 // 遍历花坛,找到这样一个位置,此位置空,&& 前后都为空,则sum+1 // 判断sum与n大小比较 [0, 1, 0] if (!n) return true; var sum = 0 var length = flowerbed.length for (var j = 0; j < length; j++) { if (!flowerbed[j]) {//当前是 空地 //对于右侧的限制条件 true 表示可以种植(仅对于左侧来讲) var leftVoid = j === 0 || flowerbed[j - 1] === 0 //对于右侧的限制条件 true 表示可以种植(仅对于右侧来讲) var rightVoid = j === length - 1 || flowerbed[j + 1] === 0 if (leftVoid && rightVoid) { // 可以种植 flowerbed[j] = 1 //直接将改位置 种上花 让后面的判断顺利进行 比较关键 sum++ if (sum === n) { //循环次数 可能少些 因为 sum的最大值是大于等于n 才能满足 return true } } } } return false }
如果喜欢LeetCode或者更多数据结构的内容, 可以戳这里 ,欢迎star
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网
猜你喜欢:- LeetCode每日一题: 种花问题(No.605)
- 数据结构 – 用于构建文件系统的数据结构?
- 荐 用Python解决数据结构与算法问题(三):线性数据结构之栈
- 数据库索引背后的数据结构
- 基础数据结构及js数据存储
- R中数据结构与数据的输入
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
CSS3 For Web Designers
Dan Cederholm / Happy Cog / 2010-11 / $18
From advanced selectors to generated content to the triumphant return of web fonts, and from gradients, shadows, and rounded corners to full-blown animations, CSS3 is a universe of creative possibilit......一起来看看 《CSS3 For Web Designers》 这本书的介绍吧!