内容简介:前面已经讲解集合中的HashMap并且也对其中使用的红黑树结构做了对应的说明,这次就来看下简单一些的另一个集合类,也是日常经常使用到的ArrayList,整体来说,算是比较好理解的集合了,一起来看下jdk版本:1.8
前面已经讲解集合中的HashMap并且也对其中使用的红黑树结构做了对应的说明,这次就来看下简单一些的另一个集合类,也是日常经常使用到的ArrayList,整体来说,算是比较好理解的集合了,一起来看下
前言
jdk版本:1.8
类定义
public class ArrayList<E> extends AbstractList<E> implements List<E>, RandomAccess, Cloneable, java.io.Serializable
AbstractList
变量说明
private static final long serialVersionUID = 8683452581122892189L; /** * 默认的初始化容量 * 这里和HashMap初始容量不同,默认10 * 有些面试官可能问,虽然我感觉没必要记这玩意 */ private static final int DEFAULT_CAPACITY = 10; /** * 空集合,在构造函数中看说明 */ private static final Object[] EMPTY_ELEMENTDATA = {}; /** * 默认容量大小的空集合,这里和上边一样,但是第一次添加的时候会自动扩容到默认容量,看构造函数的说明 */ private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {}; /** * The array buffer into which the elements of the ArrayList are stored. * The capacity of the ArrayList is the length of this array buffer. Any * empty ArrayList with elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA * will be expanded to DEFAULT_CAPACITY when the first element is added. * * 基于数组实现容量大小变化,上边注释也说了第一次添加元素时,将容量扩展到DEFAULT_CAPACITY * 更详细的接着往下看 */ transient Object[] elementData; // non-private to simplify nested class access /** * 数组长度,即arraylist的长度 */ private int size; /** * 最大数组长度限制 */ private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
从上边变量定义也能看出来ArrayList本质上是基于Object[]实现,故方法上的操作都是基于数组来进行
构造方法
从构造方法中能看出:
- 如果不设置初始化容量或者初始化赋值集合则elementData赋值为空数组而不是默认容量为10的数组
/** * 无参构造方法,初始化为默认空数组 */ public ArrayList() { this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA; } public ArrayList(Collection<? extends E> c) { elementData = c.toArray(); // 原集合不为空,则进行复制 if ((size = elementData.length) != 0) { // c.toArray might (incorrectly) not return Object[] (see 6260652) /** * 官方bug * c.toArray() 返回类型取决于其实际类型 * 查了下,应该是调用子类的toArray(重写)方法返回具体的类型 * 自己多想下也明白了,父类保存了子类的数组对象,这里需要调整成Object[] * 不明白的自己Google下 */ if (elementData.getClass() != Object[].class) elementData = Arrays.copyOf(elementData, size, Object[].class); } else { // 原集合为空,elementData赋值为空数组 this.elementData = EMPTY_ELEMENTDATA; } } /** * 初始化容量 代码比较简单 */ public ArrayList(int initialCapacity) { if (initialCapacity > 0) { this.elementData = new Object[initialCapacity]; } else if (initialCapacity == 0) { this.elementData = EMPTY_ELEMENTDATA; } else { throw new IllegalArgumentException("Illegal Capacity: "+ initialCapacity); } }
重要方法
add
每次增加元素时会通过ensureCapacityInternal进行容量大小的验证,不满足则进行扩容操作,通过grow方法进行扩容操作,在允许的范围上扩容为原来的1.5倍
/** * 增加元素 */ public boolean add(E e) { ensureCapacityInternal(size + 1); // Increments modCount!! elementData[size++] = e; return true; } /** * 确认容量 */ private void ensureCapacityInternal(int minCapacity) { ensureExplicitCapacity(calculateCapacity(elementData, minCapacity)); } /** * 计算容量 * elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA * 在这里进行了初始化判断 * 最小容量为10 */ private static int calculateCapacity(Object[] elementData, int minCapacity) { if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) { return Math.max(DEFAULT_CAPACITY, minCapacity); } return minCapacity; } /** * 修改次数记录modCount,容量是否扩容判断 */ private void ensureExplicitCapacity(int minCapacity) { modCount++; // overflow-conscious code if (minCapacity - elementData.length > 0) grow(minCapacity); } /** * 扩容 */ private void grow(int minCapacity) { // overflow-conscious code int oldCapacity = elementData.length; // 右移操作扩容为原来的1.5倍(位移操作,自己试下就明白) int newCapacity = oldCapacity + (oldCapacity >> 1); // 比较最小值 if (newCapacity - minCapacity < 0) newCapacity = minCapacity; // 比较最大值 if (newCapacity - MAX_ARRAY_SIZE > 0) newCapacity = hugeCapacity(minCapacity); // minCapacity is usually close to size, so this is a win: elementData = Arrays.copyOf(elementData, newCapacity); } /** * 大容量值处理 */ private static int hugeCapacity(int minCapacity) { // 溢出抛出异常 if (minCapacity < 0) // overflow throw new OutOfMemoryError(); // 计算超出时取值判断 return (minCapacity > MAX_ARRAY_SIZE) ? Integer.MAX_VALUE : MAX_ARRAY_SIZE; } /** * 将element插入index的位置 */ public void add(int index, E element) { rangeCheckForAdd(index); ensureCapacityInternal(size + 1); // Increments modCount!! // native方法实现拷贝 System.arraycopy(elementData, index, elementData, index + 1, size - index); elementData[index] = element; size++; }
addAll
/** * 先对集合容量进行检查,记录修改次数,调用arraycopy将旧数组元素拷贝到新数组元素中 */ public boolean addAll(Collection<? extends E> c) { Object[] a = c.toArray(); int numNew = a.length; ensureCapacityInternal(size + numNew); // Increments modCount System.arraycopy(a, 0, elementData, size, numNew); size += numNew; return numNew != 0; } /** * 和上边不同之处在于将数组拷贝到新数组index位置,其后元素依次排序 */ public boolean addAll(int index, Collection<? extends E> c) { rangeCheckForAdd(index); Object[] a = c.toArray(); int numNew = a.length; ensureCapacityInternal(size + numNew); // Increments modCount int numMoved = size - index; if (numMoved > 0) System.arraycopy(elementData, index, elementData, index + numNew, numMoved); System.arraycopy(a, 0, elementData, index, numNew); size += numNew; return numNew != 0; }
clear
/** * 清空 */ public void clear() { modCount++; // clear to let GC do its work // 注释上也写明了原因,置空为了让GC工作,回收空间 for (int i = 0; i < size; i++) elementData[i] = null; size = 0; }
contains
/** * 判断某个元素是否在集合中 */ public boolean contains(Object o) { return indexOf(o) >= 0; } /** * 返回元素在集合中的首个索引(从小到大) * 主要是判空区分 */ public int indexOf(Object o) { if (o == null) { for (int i = 0; i < size; i++) if (elementData[i]==null) return i; } else { for (int i = 0; i < size; i++) if (o.equals(elementData[i])) return i; } return -1; }
get
/** * 获取索引为index的元素,先检查索引值,再调用elementData方法 */ public E get(int index) { rangeCheck(index); return elementData(index); }
iterator
/** * 返回迭代器 内部类实现 */ public Iterator<E> iterator() { return new Itr(); } private class Itr implements Iterator<E> { int cursor; // index of next element to return int lastRet = -1; // index of last element returned; -1 if no such int expectedModCount = modCount; Itr() {} public boolean hasNext() { return cursor != size; } /** * 获取索引为cursor的元素,并置cursor = cursor + 1,方便下次调用,lastRet记录当前返回的元素索引 */ @SuppressWarnings("unchecked") public E next() { checkForComodification(); int i = cursor; if (i >= size) throw new NoSuchElementException(); Object[] elementData = ArrayList.this.elementData; if (i >= elementData.length) throw new ConcurrentModificationException(); cursor = i + 1; return (E) elementData[lastRet = i]; } /** * 移除当前lastRet对应元素,cursor置为lastRet,修改次数修改 */ public void remove() { if (lastRet < 0) throw new IllegalStateException(); checkForComodification(); try { ArrayList.this.remove(lastRet); cursor = lastRet; lastRet = -1; expectedModCount = modCount; } catch (IndexOutOfBoundsException ex) { throw new ConcurrentModificationException(); } } /** * jdk 1.8新增接口,调用accept接口对每个元素执行动作 */ @Override @SuppressWarnings("unchecked") public void forEachRemaining(Consumer<? super E> consumer) { Objects.requireNonNull(consumer); final int size = ArrayList.this.size; int i = cursor; if (i >= size) { return; } final Object[] elementData = ArrayList.this.elementData; if (i >= elementData.length) { throw new ConcurrentModificationException(); } while (i != size && modCount == expectedModCount) { consumer.accept((E) elementData[i++]); } // update once at end of iteration to reduce heap write traffic cursor = i; lastRet = i - 1; checkForComodification(); } /** * 检查 */ final void checkForComodification() { if (modCount != expectedModCount) throw new ConcurrentModificationException(); } }
lastIndexOf
/** * 返回匹配对象的首个索引(从大到小) */ public int lastIndexOf(Object o) { if (o == null) { for (int i = size-1; i >= 0; i--) if (elementData[i]==null) return i; } else { for (int i = size-1; i >= 0; i--) if (o.equals(elementData[i])) return i; } return -1; }
remove
/** * 删除索引为index的元素 */ public E remove(int index) { rangeCheck(index); //修改记录+1 modCount++; E oldValue = elementData(index); int numMoved = size - index - 1; if (numMoved > 0) //使用arraycopy重新整理集合 System.arraycopy(elementData, index+1, elementData, index, numMoved); elementData[--size] = null; // clear to let GC do its work return oldValue; } /** * 根据给定的元素删除,这里看源码也能发现,只删除第一个匹配成功的元素即返回 */ public boolean remove(Object o) { if (o == null) { for (int index = 0; index < size; index++) if (elementData[index] == null) { fastRemove(index); return true; } } else { for (int index = 0; index < size; index++) if (o.equals(elementData[index])) { fastRemove(index); return true; } } return false; }
removeAll
/** * 移除所有和参数集合相同的元素 */ public boolean removeAll(Collection<?> c) { Objects.requireNonNull(c); return batchRemove(c, false); } private boolean batchRemove(Collection<?> c, boolean complement) { final Object[] elementData = this.elementData; int r = 0, w = 0; boolean modified = false; try { for (; r < size; r++) //将保留的数据写回elementData if (c.contains(elementData[r]) == complement) elementData[w++] = elementData[r]; } finally { // Preserve behavioral compatibility with AbstractCollection, // even if c.contains() throws. if (r != size) { System.arraycopy(elementData, r, elementData, w, size - r); w += size - r; } if (w != size) { // clear to let GC do its work for (int i = w; i < size; i++) //清理为空的数据 elementData[i] = null; modCount += size - w; size = w; modified = true; } } return modified; }
set
/** * 设置索引为index的值为element */ public E set(int index, E element) { rangeCheck(index); E oldValue = elementData(index); elementData[index] = element; return oldValue; }
toArray
/** * 将list元素拷贝返回 */ public Object[] toArray() { return Arrays.copyOf(elementData, size); } @SuppressWarnings("unchecked") public <T> T[] toArray(T[] a) { if (a.length < size) // Make a new array of a's runtime type, but my contents: return (T[]) Arrays.copyOf(elementData, size, a.getClass()); System.arraycopy(elementData, 0, a, 0, size); if (a.length > size) a[size] = null; return a; }
subList
/** * 获取子数组,内部类实现,子数组只是引用了原来的数组,因此改变子数组,相当于改变了原来的数组 * 子数组不再详细说明,ArrayList类相似,只是多了几个成员变量,来限制范围 * 源码部分自行查看 */ public List<E> subList(int fromIndex, int toIndex) { subListRangeCheck(fromIndex, toIndex, size); return new SubList(this, 0, fromIndex, toIndex); }
总结
整体来看ArrayList源码还是比较简单的,从源码部分也能注意到几个点:
- ArrayList是基于数组实现的集合类
- Object数组可以存放null
- 非线程安全,如需并发线程安全类需使用对应的线程安全包装类保证
- 如已经确定容量大小,可以提前初始化设置好对应容量以减少中间扩容带来的损耗
总的来说,还是相对比较简单了,希望对各位有所帮助,如有错误,欢迎指正,谢谢
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网
猜你喜欢:- JDK源码那些事儿之HashMap.TreeNode
- JDK源码那些事儿之并发ConcurrentHashMap上篇
- BIO到NIO源码的一些事儿之NIO 中
- BIO到NIO源码的一些事儿之NIO 下 Buffer解读 下
- Linux 管道那些事儿
- 代码重构那些事儿
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
深入浅出Struts 2
Budi Kuniawan / 杨涛、王建桥、杨晓云 / 人民邮电出版社 / 2009-04 / 59.00元
本书是广受赞誉的Struts 2优秀教程,它全面而深入地阐述了Struts 2的各个特性,并指导开发人员如何根据遇到的问题对症下药,选择使用最合适的特性。作者处处从实战出发,在丰富的示例中直观地探讨了许多实用的技术,如数据类型转换、文件上传和下载、提高Struts 2应用的安全性、调试与性能分析、FreeMarker、Velocity、Ajax,等等。跟随作者一道深入Struts 2,聆听大量来之......一起来看看 《深入浅出Struts 2》 这本书的介绍吧!