从一个越写越慢的编辑器中聊聊优化思路

栏目: 数据库 · 发布时间: 5年前

内容简介:你用过一个我曾在项目中实现了一个MD编辑器, 用来解析简单的MD文本, 不过它的性能令我捉急. 初期基本没有做任何性能优化相关的内容, 导致每当我正在写的文章变长之后, 编辑器会变得非常~非常~卡, 所以说是越写越慢的编辑器( ╯□╰ ) 这期文章主要针对这个编辑器聊聊我实践以及思考总结的一些性能优化方法, 肯定还有文中没有总结到的一些方法, 欢迎各位看官不舍赐教, 留言评论.文中MD编辑器可以在左侧窗口输入MD格式文本, 然后通过调用解析函数将文本解析转换为HTML代码, 放到右侧v-html窗口中直接渲

你用过一个 越写越慢的编辑器 么?

我曾在项目中实现了一个MD编辑器, 用来解析简单的MD文本, 不过它的性能令我捉急. 初期基本没有做任何性能优化相关的内容, 导致每当我正在写的文章变长之后, 编辑器会变得非常~非常~卡, 所以说是越写越慢的编辑器( ╯□╰ ) 这期文章主要针对这个编辑器聊聊我实践以及思考总结的一些性能优化方法, 肯定还有文中没有总结到的一些方法, 欢迎各位看官不舍赐教, 留言评论.

从一个越写越慢的编辑器中聊聊优化思路

解析过程简述

文中MD编辑器可以在左侧窗口输入MD格式文本, 然后通过调用解析函数将文本解析转换为HTML代码, 放到右侧v-html窗口中直接渲染.

一般来说MD解析不需要经过词法语法分析, 而且标点符号几乎没有二义性, 解析起来比较简单. 对于一段简单的MD文本, 我们大可从一个正则表达式的角度入手. 思考从以下4点开始匹配:

  1. 解析块状元素, 分割线, 引用块, 代码段等
  2. 解析文本元素, 标题, 列表, 以及普通文本内容
  3. 解析行内元素, 角标, 加粗, 斜体等

我们以以下文本为例进行解析:

### 一个*斜体*标题
复制代码

首先命中文本元素标题, 内容为 一个*斜体*标题

紧接着, 继续解析比文本元素优先级更低的行内元素, 这次命中行内元素斜体, 内容为 斜体

至此, 我们将解析完的内容推入结果数组, 结果形如:

parsedContent = [
 `<h3>一个<i>斜体</i>标题</h3>`
]
复制代码

如果文本不是一行, 再继续之前的思路继续解析, 直到原始内容为空, 得到最终的解析结果.

1. 解析函数节流

函数节流是老生常谈的话题了, 当然不能当左侧内容一有变动就立即更新. 在一些极端的场合, 比如长按删除或是长按空格回车等情况下, 连续执行解析函数硬件会造成沉重的负担. 所以我们优化思路首先要求尽量在不太影响视觉效果的情况下, 尽可能少地执行解析函数.

目标有了, 那么对应的解决方案手到擒来:

  1. 对特定类型按键, 我们将不调用解析函数, 如多个连续的空格回车或是某些行内符号. 因为这些内容的解析结果对之后预览结果没有影响
  2. 对解析函数节流, 将调用频率控制在0.3秒1次, 具体的数值可根据个人需求调整, 比如我常常在回车后习惯性扫一眼预览, 那么按回车后可以跳过节流立即执行一次解析

2. 缓存解析结果

缓存解析结果方案, 类似于算法题中常见的缓存对象. 比如我们要实现一个斐波那契数列递归函数, 计算 fabi(5) 时需要用到 fabi(3)fabi(4) 的结果, 如果我们有缓存, 我们可以直接从缓存中获取 fabi(3) 的结果. 将这一概念推导到解析器, 我们可以创建一个对象去缓存解析结果.

备忘录实现

一开始写解析结果缓存的时候, 笔者犯了一个很严重的错误, 那就是想尝试将所有内容以及其解析值缓存到备忘录对象, 代码形如:

data: {
  // 缓存对象
  memo: {}
}
watch: {
  // 当编辑器的value变动时将尝试直接获取缓存, 如果没有缓存才解析内容
  value (n, o) {
    if (this.memo[n]) {
      this.parsedValue = this.memo[n]
    } else {
      this.memo[n] = this.parsedValue = parseMDToHTML(n)
    }
  }
}
复制代码

代码看起来没什么问题, 因为问题不在代码.

问题在内存容量上.

代码运行在浏览器中, 一般情况下, 内存相对于代码执行速度而言是比较廉价的, 所以笔者经常使用到用对象进行缓存这种 以空间换时间 的代码模式. 一般情况下它非常好用, 但它可能带来一个问题. 这种代码模式进一步限制了前端对内存的感知——笔者将整个编辑区域的原始值作为对象的键, 将其解析结果作为值缓存下来——一旦文章长度开始增长, 缓存对象占用的内存容量将急剧增大.

假设我们有某文章字符长度总量为n, 那么备忘录模型将生长成这个样子:

value = [1, 2, 3, ..., n-1, n].join('')
memo == {
  '1': '1',
  '12': '12',
  '123': '123',
  // ...
  '12345...n-1': '12345...n-1',
  '12345...n': '12345...n',
}
复制代码

那么可以轻易得出, 文章字符长度(N)和内存消耗量(O)的关系, 形如:

和你想的一样, 笔者浏览器内存爆了:sweat_smile:

不仅如此, 文章不断地增长, 不仅带来内存压力, 解析函数每次要处理地内容也变多, 浏览器响应速度也越来越慢.

我们亟需更好的缓存方案.

LRU 以及 LFU 策略

在解析过程简述小节, 我们提到解析器在解析时, 会将MD文本分为块状内容进行解析. 由此我们可以尝试缓存块状内容的解析结果, 而不是去缓存全文. 为了在这次优化不爆内存, 我们引入 有限空间概念 ——设想编辑器内含一个数组, 用来存放MD文本中块状内容以及其解析结果, 同时数组有最大长度限制, 限制为1000, 假设我们的每一个元素占5kb的内存, 那么这个数组将只占浏览器约5MB的内存, 无论我们怎么折腾, 至少不至于爆内存了~

不过我们需要先考虑这样一种情况, 假使我们的文章有超过1001个块状内容, 那么多出的这一个块状内容进行解析后得到的结果很显然不能直接存入长度限制为1000数组中. 所以我们需要一种算法去计算应该舍弃数组中哪一个元素, 将该元素舍弃后, 再把我们手中结果存入数组.

用过 Redis 的朋友应该了解, Redis作为一种使用内存作缓存的缓存系统, 它有多种缓存策略:

  1. 基于数据访问时间进行淘汰(LRU : Least Recently Used 淘汰最近时间最少使用到的内容)
  2. 基于访问频率进行淘汰(LFU : Least Frequently Used 淘汰访问频次最低的内容)

下文将仿照Redis的缓存淘汰策略手动造一个使用LFU策略进行缓存淘汰的缓存类.

简单的链表实现

实际的代码并未采用数组充当缓存元素, 实际选择了双向链表, 使用双向列表可以抹除使用出租移除元素添加元素带来的性能成本.

我们需要提前定义好节点类 Node :

function Node (config) {
  this.key = config.key
  this.prev = null
  this.next = null
  this.data = config.data || {
    val: null,
    weight: 1
  }
}
// 将当前节点的next指向另一节点
Node.prototype.linkNextTo = function (nextNode) {
  this.next = nextNode
  nextNode.prev = this
}
// 将当前节点插入某一结点后
Node.prototype.insertAfterNode = function (prevNode) {
  const prevNextNode = prevNode.next
  prevNode.linkNext(this)
  this.linkNext(prevNextNode)
}
// 删除当前节点, 除非节点是头节点/尾节点
Node.prototype.unLink = function () {
  const prev = this.prev
  const next = this.next

  if (!prev || !next) {
    console.log(`Node : ${this.key} cant unlink`)
    return false
  }
  prev.linkNext(next)
}
复制代码

缓存类

缓存类将内含一个双向链表, 同时还包含最大链表节点数, 当前链表长度这些属性:

数组可以直接通过下标去获取某个特定的元素, 而链表不行, 在缓存类中笔者使用一个备忘录对象去记录每一个节点的访问地址, 充当数组下标的作用, 详见下代码中`nodeMemo`的使用

function LFU (limit) {
  this.headNode = new Node({ key: '__head__', data: { val: null, weight: Number.MAX_VALUE } })
  this.tailNode = new Node({ key: '__tail__', data: { val: null, weight: Number.MIN_VALUE } })
  this.headNode.linkNext(this.tailNode)
  this.nodeMemo = {}
  this.nodeLength = 0
  this.nodeLengthLimit = limit || 999
}
// 通过key判断缓存中是否有某元素
LFU.prototype.has = function (key) {
  return !!this.nodeMemo[key]
}
// 通过key获取缓存中某一元素值
LFU.prototype.get = function (key) {
  let handle = this.nodeMemo[key]
  if (handle) {
    this.addNodeWeight(handle)
    return handle.data.val
  } else {
    throw new Error(`Key : ${key} is not fount in LFU Nodes`)
  }
}
// 通过key获取缓存中某一元素权重
LFU.prototype.getNodeWeight = function (key) {
  let handle = this.nodeMemo[key]
  if (handle) {
    return handle.data.weight
  } else {
    throw new Error(`Key : ${key} is not fount in LFU Nodes`)
  }
}
// 添加新的缓存元素
LFU.prototype.set = function (key, val) {
  const handleNode = this.nodeMemo[key]
  if (handleNode) {
    this.addNodeWeight(handleNode, 10)
    handleNode.data.val = val
  } else {
    if (this.nodeLength < this.nodeLengthLimit) {
      this.nodeLength++
    } else {
      const deleteNode = this.tailNode.prev
      deleteNode.unLink()
      delete this.nodeMemo[deleteNode.key]
    }
    const newNode = new Node({ key, data: { val, weight: 1 } })
    this.nodeMemo[key] = newNode
    newNode.insertAfter(this.tailNode.prev)
  }
}
// 打印缓存中全部节点
LFU.prototype.showAllNodes = function () {
  let next = this.headNode.next
  while (next && next.next) {
    console.log(`Node : ${next.key} has data ${next.data.val} and weight ${next.data.weight}`)
    next = next.next
  }
}
// 对某一元素进行加权操作
LFU.prototype.addNodeWeight = function (node, w = 1) {
  const handle = node
  let prev = handle.prev

  handle.unLink()
  handle.data.weight += w
  while (prev) {
    if (prev.data.weight <= handle.data.weight) {
      prev = prev.prev
    } else {
      handle.insertAfter(prev)
      prev = null
    }
  }
}
复制代码

另附测试用例

import LFU from '@/utils/suites/teditor/LFU'

describe('LFU测试', () => {
  const LFU = new LFU(4)
  it('能够正确维护链表长度', () => {
    LFU.set('1', 1)
    LFU.set('2', 2)
    LFU.set('3', 3)
    LFU.set('4', 4)
    LFU.set('5', 5)
    expect(LFU.has('4')).to.equal(false)
  })
  it('节点的数据应该正确', () => {
    expect(LFU.get('1')).to.equal(1)
    expect(LFU.get('2')).to.equal(2)
    expect(LFU.get('3')).to.equal(3)
    expect(LFU.get('5')).to.equal(5)
    LFU.get('5')
    LFU.get('3')
    LFU.get('3')
    LFU.get('3')
    LFU.get('3')
    LFU.set('5', 6)
    expect(LFU.get('5')).to.equal(6)
  })
  it('节点的权重应该正确', () => {
    expect(LFU.getNodeWeight('5')).to.equal(14)
    expect(LFU.getNodeWeight('3')).to.equal(6)
  })
})

复制代码

3. 拆分渲染内容

拆分渲染内容和通过节流解析函数想要达到的目的类似——通过限制浏览器的重绘回流次数以减轻硬件负担.

笔者的解析函数会将传入的MD文本解析为HTML片段, 然后通过v-html将片段放到浏览器右侧窗口进行渲染, 虽然我们在解析函数中做了缓存, 使得解析速度增加, 但是每一次的解析都会使浏览器重新绘制整一个右侧窗口, 这里有一个优化点.

拆分渲染内容就是要解决这样一个问题. 我们把右侧窗口一整块v-html区域以MD块状元素拆分为多个小的v-html区域, 当编辑器某一行的文本数据有变动时, 只通知右侧窗口更新对应区域的内容, 这样一来, 浏览器性能可以得到进一步提升.

总结

前端做页面性能优化时, 除了网络层面的优化, 剩下很大一块内容都落在JS和浏览器的头上, 考虑JS, 主要是如何减少重复计算, 至于浏览器, 则主要会想到重绘回流这块. 依靠这两大山头, 相信你也能写出运行速度飞快的代码!

本文只对代码做了概括性说明, 具体的代码细节还需要待我使劲整理再发一篇新文章, 比如<动手撸一个简单的LFU缓存类>之类的:grinning:, 敬请期待~

更多


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

离散数学及其应用(原书第6版·本科教学版)

离散数学及其应用(原书第6版·本科教学版)

[美] Kenneth H. Rosen / 袁崇义、屈婉玲、张桂芸 / 机械工业出版社 / 2011-11 / 49.00元

《离散数学及其应用》一书是介绍离散数学理论和方法的经典教材,已经成为采用率最高的离散数学教材,仅在美国就被600多所高校用作教材,并获得了极大的成功。第6版在前5版的基础上做了大量的改进,使其成为更有效的教学工具。 本书基于该书第6版进行改编,保留了国内离散数学课程涉及的基本内容,更加适合作为国内高校计算机及相关专业本科生的离散数学课程教材。本书的具体改编情况如下: · 补充了关于范式......一起来看看 《离散数学及其应用(原书第6版·本科教学版)》 这本书的介绍吧!

JS 压缩/解压工具
JS 压缩/解压工具

在线压缩/解压 JS 代码

MD5 加密
MD5 加密

MD5 加密工具

Markdown 在线编辑器
Markdown 在线编辑器

Markdown 在线编辑器