内容简介:公众号后台回复“获取作者独家秘制学习资料文章来源:五分钟学算法
公众号后台回复“ 资料 ”
获取作者独家秘制学习资料
文章来源:五分钟学算法
动态规划
1 概念
动态规划算法是通过拆分问题,定义问题状态和状态之间的关系,使得问题能够以递推(或者说分治)的方式去解决。在学习动态规划之前需要明确掌握几个重要概念。
阶段:对于一个完整的问题过程,适当的切分为若干个相互联系的子问题,每次在求解一个子问题,则对应一个阶段,整个问题的求解转化为按照阶段次序去求解。
状态:状态表示每个阶段开始时所处的客观条件,即在求解子问题时的已知条件。状态描述了研究的问题过程中的状况。
决策:决策表示当求解过程处于某一阶段的某一状态时,可以根据当前条件作出不同的选择,从而确定下一个阶段的状态,这种选择称为决策。
策略:由所有阶段的决策组成的决策序列称为全过程策略,简称策略。
最优策略:在所有的策略中,找到代价最小,性能最优的策略,此策略称为最优策略。
状态转移方程:状态转移方程是确定两个相邻阶段状态的演变过程,描述了状态之间是如何演变的。
2 使用场景
能采用动态规划求解的问题的一般要具有 3 个性质:
(1) 最优化 :如果问题的最优解所包含的子问题的解也是最优的,就称该问题具有最优子结构,即满足最优化原理。子问题的局部最优将导致整个问题的全局最优。换句话说,就是问题的一个最优解中一定包含子问题的一个最优解。
(2) 无后效性 :即某阶段状态一旦确定,就不受这个状态以后决策的影响。也就是说,某状态以后的过程不会影响以前的状态,只与当前状态有关,与其他阶段的状态无关,特别是与未发生的阶段的状态无关。
(3) 重叠子问题 :即子问题之间是不独立的,一个子问题在下一阶段决策中可能被多次使用到。(该性质并不是动态规划适用的必要条件,但是如果没有这条性质,动态规划算法同其他算法相比就不具备优势)
3 算法流程
(1)划分阶段:按照问题的时间或者空间特征将问题划分为若干个阶段。
(2)确定状态以及状态变量:将问题的不同阶段时期的不同状态描述出来。
(3)确定决策并写出状态转移方程:根据相邻两个阶段的各个状态之间的关系确定决策。
(4)寻找边界条件:一般而言,状态转移方程是递推式,必须有一个递推的边界条件。
(5)设计程序,解决问题
实战练习
下面的三道算法题都是来源于 LeetCode 上与股票买卖相关的问题 ,我们按照 动态规划 的算法流程来处理该类问题。
股票买卖这一类的问题,都是给一个输入数组,里面的每个元素表示的是每天的股价,并且你只能持有一支股票(也就是你必须在再次购买前出售掉之前的股票),一般来说有下面几种问法:
-
只能买卖一次
-
可以买卖无数次
-
可以买卖 k 次
需要你设计一个算法去获取最大的利润。
买卖股票的最佳时机
题目来源于 LeetCode 上第 121 号问题:买卖股票的最佳时机。题目难度为 Easy,目前通过率为 49.4% 。
题目描述
给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格。
如果你最多只允许完成一笔交易(即买入和卖出一支股票),设计一个算法来计算你所能获取的最大利润。
注意你不能在买入股票前卖出股票。
示例 1:
输入: [7,1,5,3,6,4] 输出: 5 解释: 在第 2 天(股票价格 = 1)的时候买入,在第 5 天(股票价格 = 6)的时候卖出,最大利润 = 6-1 = 5 。 注意利润不能是 7-1 = 6, 因为卖出价格需要大于买入价格。
示例 2:
输入: [7,6,4,3,1] 输出: 0 解释: 在这种情况下, 没有交易完成, 所以最大利润为 0。
题目解析
我们按照动态规划的思想来思考这道问题。
状态
有 买入(buy) 和 卖出(sell) 这两种状态。
转移方程
对于买来说,买之后可以卖出(进入卖状态),也可以不再进行股票交易(保持买状态)。
对于卖来说,卖出股票后不在进行股票交易(还在卖状态)。
只有在手上的钱才算钱,手上的钱购买当天的股票后相当于亏损。也就是说当天买的话意味着损失 -prices[i]
,当天卖的话意味着增加 prices[i]
,当天卖出总的收益就是 buy+prices[i]
。
所以我们只要考虑当天买和之前买哪个收益更高,当天卖和之前卖哪个收益更高。
-
buy = max(buy, -price[i]) (注意:根据定义 buy 是负数)
-
sell = max(sell, prices[i] + buy)
边界
第一天 buy = -prices[0]
, sell = 0
,最后返回 sell 即可。
代码实现
//程序员小吴 class Solution { public int maxProfit(int[] prices) { if(prices.length <= 1) return 0; int buy = -prices[0], sell = 0; for(int i = 1; i < prices.length; i++) { buy = Math.max(buy, -prices[i]); sell = Math.max(sell, prices[i] + buy); } return sell; } }
买卖股票的最佳时机 II
题目来源于 LeetCode 上第 122 号问题:买卖股票的最佳时机 II。题目难度为 Easy,目前通过率为 53.0% 。
题目描述
给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格。
设计一个算法来计算你所能获取的最大利润。你可以尽可能地完成更多的交易(多次买卖一支股票)。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
示例 1:
输入: [7,1,5,3,6,4] 输出: 7 解释: 在第 2 天(股票价格 = 1)的时候买入,在第 3 天(股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。 随后,在第 4 天(股票价格 = 3)的时候买入,在第 5 天(股票价格 = 6)的时候卖出, 这笔交易所能获得利润 = 6-3 = 3 。
示例 2:
输入: [1,2,3,4,5] 输出: 4 解释: 在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。 注意你不能在第 1 天和第 2 天接连购买股票,之后再将它们卖出。 因为这样属于同时参与了多笔交易,你必须在再次购买前出售掉之前的股票。
示例 3:
输入: [7,6,4,3,1] 输出: 0 解释: 在这种情况下, 没有交易完成, 所以最大利润为 0。
题目解析
状态
有 买入(buy) 和 卖出(sell) 这两种状态。
转移方程
对比上题,这里可以有无限次的买入和卖出,也就是说 买入 状态之前可拥有 卖出 状态,所以买入的转移方程需要变化。
-
buy = max(buy, sell - price[i])
-
sell = max(sell, buy + prices[i] )
边界
第一天 buy = -prices[0]
, sell = 0
,最后返回 sell 即可。
代码实现
//程序员小吴 class Solution { public int maxProfit(int[] prices) { if(prices.length <= 1) return 0; int buy = -prices[0], sell = 0; for(int i = 1; i < prices.length; i++) { sell = Math.max(sell, prices[i] + buy); buy = Math.max( buy,sell - prices[i]); } return sell; } }
买卖股票的最佳时机 III
题目来源于 LeetCode 上第 123 号问题:买卖股票的最佳时机 III。题目难度为 Hard,目前通过率为 36.1% 。
题目描述
给定一个数组,它的第 i 个元素是一支给定的股票在第 i 天的价格。
设计一个算法来计算你所能获取的最大利润。你最多可以完成 两笔 交易。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
示例 1:
输入: [3,3,5,0,0,3,1,4] 输出: 6 解释: 在第 4 天(股票价格 = 0)的时候买入,在第 6 天(股票价格 = 3)的时候卖出,这笔交易所能获得利润 = 3-0 = 3 。 随后,在第 7 天(股票价格 = 1)的时候买入,在第 8 天 (股票价格 = 4)的时候卖出,这笔交易所能获得利润 = 4-1 = 3 。
示例 2:
输入: [1,2,3,4,5] 输出: 4 解释: 在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。 注意你不能在第 1 天和第 2 天接连购买股票,之后再将它们卖出。 因为这样属于同时参与了多笔交易,你必须在再次购买前出售掉之前的股票。
示例 3:
输入: [7,6,4,3,1] 输出: 0 解释: 在这个情况下, 没有交易完成, 所以最大利润为 0。
题目解析
这里限制了最多两笔交易。
状态
有 第一次买入(fstBuy) 、 第一次卖出(fstSell) 、 第二次买入(secBuy) 和 第二次卖出(secSell) 这四种状态。
转移方程
这里可以有两次的买入和卖出,也就是说 买入 状态之前可拥有 卖出 状态,所以买入和卖出的转移方程需要变化。
-
fstBuy = max(fstBuy , -price[i])
-
fstSell = max(fstSell,fstBuy + prices[i] )
-
secBuy = max(secBuy ,fstSell -price[i]) (受第一次卖出状态的影响)
-
secSell = max(secSell ,secBuy + prices[i] )
边界
-
一开始
fstBuy = -prices[0]
-
买入后直接卖出,
fstSell = 0
-
买入后再卖出再买入,
secBuy - prices[0]
-
买入后再卖出再买入再卖出,
secSell = 0
最后返回 secSell 。
代码实现
//程序员小吴 class Solution { public int maxProfit(int[] prices) { int fstBuy = Integer.MIN_VALUE, fstSell = 0; int secBuy = Integer.MIN_VALUE, secSell = 0; for(int i = 0; i < prices.length; i++) { fstBuy = Math.max(fstBuy, -prices[i]); fstSell = Math.max(fstSell, fstBuy + prices[i]); secBuy = Math.max(secBuy, fstSell - prices[i]); secSell = Math.max(secSell, secBuy + prices[i]); } return secSell; } }
END
推荐阅读:
-
从团队自研的百万并发中间件系统的内核设计看 Java 并发性能优化!
欢迎长按下图关注公众号 石杉的架构笔记 ,
后台回复“ 资料 ”,获取作者独家秘制学习资料!
BAT架构经验倾囊相授
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网
猜你喜欢:- Git 居然可以用来跟女神聊天?
- 无需宏,PPT也能用来投递恶意程序
- flutterw:用来下载 Flutter SDK,类似于 gradlew
- flutterw:用来下载 Flutter SDK,类似于 gradlew
- 有点意思:K8s被黑客劫持用来挖矿
- 用来组流的网络数据包嗅探器:Streamdump
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
30天自制操作系统
[日] 川合秀实 / 周自恒、李黎明、曾祥江、张文旭 / 人民邮电出版社 / 2012-8 / 99.00元
自己编写一个操作系统,是许多程序员的梦想。也许有人曾经挑战过,但因为太难而放弃了。其实你错了,你的失败并不是因为编写操作系统太难,而是因为没有人告诉你那其实是一件很简单的事。那么,你想不想再挑战一次呢? 这是一本兼具趣味性、实用性与学习性的书籍。作者从计算机的构造、汇编语言、C语言开始解说,让你在实践中掌握算法。在这本书的指导下,从零编写所有代码,30天后就可以制作出一个具有窗口系统的32位......一起来看看 《30天自制操作系统》 这本书的介绍吧!