Linux Kernel中AEP的现状和发展

栏目: 后端 · 发布时间: 5年前

内容简介:AEP是Intel推出的一种新型的非易失Optane Memory设备,又被称作Apache Pass,所以一般习惯称作AEP。在这之前也有类似的设备称作NVDIMM或PMEM,目前Linux创建的AEP设备节点也是叫做pmem(如/dev/pmem0),所以本文中NVDIMM或PMEM都指AEP。但是本文不是为了科普AEP,如果想了解AEP的一些基本知识,可以参考以下几篇文章:

AEP简介

AEP是Intel推出的一种新型的非易失Optane Memory设备,又被称作Apache Pass,所以一般习惯称作AEP。在这之前也有类似的设备称作NVDIMM或PMEM,目前 Linux 创建的AEP设备节点也是叫做pmem(如/dev/pmem0),

所以本文中NVDIMM或PMEM都指AEP。

但是本文不是为了科普AEP,如果想了解AEP的一些基本知识,可以参考以下几篇文章:

NVDIMM Enabling in SUSE Linux Enterprise Part 1

NVDIMM Enabling in SUSE Linux Enterprise Part 2

Persistent Memory Wiki

DAX

目前Linux Kernel中主要把PMEM看成一个类似于磁盘的块设备,所以可以在PMEM设备上创建文件系统,使它看起来和一般的磁盘没什么区别。但是设备的具体物理属性完全不一样,比如读写的latency,PMEM可以达到

和DRAM接近的程度,磁盘当然是望尘莫及的。所以,这就带来一个问题,众所周知,一般在Linux上常见的文件系统,比如ext4,xfs等,都是给磁盘设计的,都用到了page cache来缓存磁盘上的数据来提高性能。

但是,对于PMEM设备来说,它的访问延迟已经和内存接近了,为什么还需要内存中的page cache呢?所以,目前Linux Kernel中对这一块最大的改进就是支持DAX(Direct Access)。一句话解释DAX,就是DAX bypass了page cache。无论读写都是直接操作PMEM上的数据。

DAX需要在文件系统层面支持,如果要使用DAX,那么需要在mount文件系统时传入“-o dax”参数,比如:

1 /dev/pmem0 on /mnt type xfs (rw,relatime,seclabel,attr2,dax,inode64,noquota)

DAX极大地提高了文件系统在PMEM设备上的性能,但是还有一些问题没有解决,比如:

1. 文件系统的metadata还是需要使用page cache或buffer cache。

2. “-o dax”mount option是对整个文件系统的,不能做更细粒度的控制。

3. 没有一个API来告诉应用访问的文件是不是可以DAX访问的。

虽然DAX还有这些问题,但是目前DAX还是Linux Kernel中的主流使用方式。

PMEM用作NUMA node

既然PMEM就是memory,只是带宽和latency上差一点,那么自然会想到能不能就把PMEM当做memory用呢?答案当然是可以的。目前支持SRAT或者HMAT的硬件,都可以把PMEM识别为一个或多个NUMA node。Dave Hansen的

这组patch,Allow persistent memory to be used like normal RAM,就是通过memory hotplug的方式把PMEM添加到Linux的buddy allocator里面。新添加的PMEM会以一个或

多个NUMA node的形式出现,Linux Kernel就可以分配PMEM上的memory,这样和使用一般DRAM没什么区别。目前看这组patch已经没有什么blocking issues,不出什么问题的话,很快就会合并进入内核主线。

但是,到这里只是解决了第一步的问题,怎么把PMEM“用好”的问题还没有解决。比如,当内核分配内存时,如果从PMEM上分配了memory,并且这块内存上的数据是被经常访问的,那么由于物理特性上的差异,一般应>用都会体会到性能的下降。那么怎么更明智的使用PMEM就是一个亟待解决的问题。

吴峰光的一组patch,PMEM NUMA node and hotness accounting/migration,来尝试解决这个问题。

这组patch主要提供了下面几个功能:

1. 隔离DRAM和PMEM。为PMEM单独构造了一个zonelist,这样一般的内存分配是不会分配到PMEM上的。

2. 跟踪内存的冷热。利用内核中已经有的idle page tracking功能(目前主线内核只支持系统全局的tracking),在per process的粒度上跟踪内存的冷热。

3. 利用现有的page reclaim,在reclaim时将冷内存迁移到PMEM上(只能迁移匿名页)。

4. 利用一个userspace的daemon和idle page tracking,来将热内存(在PMEM上的)迁移到DRAM中。

这组patch发到LKML以后,引来了很激烈的讨论,主要集中在两个方面:

1. 为什么要单独构造一个zonelist把PMEM和DRAM分开?

其实在这块,我们也遇到了相似的问题。我们在某些项目要求做到控制每个进程使用的DRAM和PMEM的比例(比如8:2),但是目前的NUMA API做不到。目前的NUMA API只能控制从哪个node分配,但是不能控制比例,>比如mbind(),只能告诉进程这段VMA可以用哪些node,但是不能控制具体多少memory从哪个node来。要想做到更细粒度的控制,需要改造目前的NUMA API。而且目前memory hierarchy越来越复杂,比如device memory,这都是目前的NUMA API所不能很好解决的。

2. 能不能把冷热内存迁移通用化?

冷热内存迁移这个方向是没有问题的,问题在于目前patch中的处理太过于PMEM specific了。内核中的NUMA balancing是把“热”内存迁移到最近的NUMA node来提高性能。但是却没有对“冷”内存的处理。所以能不能实

现一种更通用的NUMA rebalancing?比如,在reclaim时候,不是直接reclaim内存,而是把内存迁移到一个远端的,或者空闲的,或者低速的NUMA node,类似于NUMA balancing所做的,只不过是往相反的方向。

笔者的一组patch,Another Approach to Use PMEM as NUMA Node(https://lore.kernel.org/linux-mm/1554955019-29472-1-git-send-email-yang.shi@linux.alibaba.com/),就体现了这种思路。利用Kernel中>已经很成熟的memory reclaim路径把“冷”内存迁移到PMEM node中,NUMA Balancing访问到这个page的时候可以选择是否把这个页迁移回DRAM,相当于是一种比较粗粒度的“热”内存识别。

社区中还有一种更加激进的想法就是不区分PMEM和DRAM,在memory reclaim时候只管把“冷”内存迁移到最近的remote node,如果target node也有内存压力,那就在target node上做同样的迁移。但是这种方法有可能

引入一个内存迁移“环”,导致内存在NUMA node中间不停地迁移,有可能引入unbounded time问题。而且一旦node增多,可能会迅速恶化问题。

在笔者看来,在内存回收方面还有一个更可能立竿见影的方案就是把PMEM用作swap设备或者swap文件。目前swap的最大问题就是传统磁盘的延迟问题,很容易造成系统无响应,这也是为什么有zswap这样的技术出现。

PMEM的低延迟特性完全可以消除swap的延迟问题。在这个方面,我们也正在做一些探索和实验。

PMEM用作RAM(DRAM作为Cache)

这个标题看起来有点歧义,上面已经说了PMEM可以作为NUMA node使用,这不已经是作为RAM了吗?怎么这里还要说用作RAM?这就涉及到AEP的另一个用法了,那就是所谓的“memory mode”。当在memory mode时,DRAM>并不是和PMEM并列的,而是变成了PMEM透明的Cache,PMEM就成了DRAM。这时候PMEM和DRAM的关系就变成了DRAM和Cache的关系。而且,DRAM是一个direct mapped的Cache(这点很重要)。

这时疑问就来了,这样不是更没有什么可做的?既不需要管理NUMA,也没有冷热内存的问题了,热的自然就被Cache了。是的,但是这会引入另外一个问题,就是Cache冲突的问题。上面已经提到,在这种情况下,DRAM是一个direct mapped的Cache,就是在同样索引下只有一个cache line命中,这样会带来比较严重的Cache冲突问题,从而降低Cache的命中率,带来性能问题。对于这个问题的详细解释,请参见这篇文章(http://www.nersc.gov/research-and-development/knl-cache-mode-performance-coe/)

为了解决这个Cache冲突的问题,Dan Williams提出了这组patch,mm: Randomize free memory。这组patch的想法很简单,就是通过randomize free area的方式来降低Cache>冲突。

目前这组patch已经合并入-mm tree,不出意外应该会在5.1时合并入内核主线。

但是这种配置的问题就是不够灵活,需要在BIOS中配置,一旦配置不可在运行时更改。

NVDIMM专用文件系统

前面提到PMEM可以作为一个块设备部署文件系统,但是现在支持的文件系统,比如ext4,xfs等,在设计时更多的考虑了怎样针对磁盘优化。但是PMEM是性质完全不同的存储介质,虽然经过一些改造,这些传统的文件

系统可以比较好的工作在PMEM上,但是还是会有很多不适合PMEM的地方,比如metadata还要经过page cache等。所以,NVDIMM专用文件系统就应用而生了。

NOVA

NOVA Filesystem就是专门为PMEM设计的文件系统。笔者对文件系统研究不深,而且对NOVA也没有很深入的研究,所以就不在这里班门弄斧了。感兴趣的读者可以参考NOVA的github link(https://github.com/NVSL/linux-nova)

之前,NOVA曾发到LKML上,但是好像社区里的maintainer们没有时间仔细review一个新的文件系统,所以合入社区的努力暂时停止了,但是还在github上继续开发中。

ZUFS

ZUFS(https://github.com/NetApp/zufs-zuf/blob/zuf-upstream/Documentation/filesystems/zufs.txt)是来自于NetApp的一个项目,ZUFS的意思是Zero-copy User Filesystem。声称是实现了完全的zero-copy,

甚至文件系统的metadata都是zero-copy的。ZUFS主要是为了PMEM设计,但是也可以支持传统的磁盘设备,相当于是FUSE的zero-copy版本,是对FUSE的性能的提升。

目前作者正在尝试将ZUFS的kernel部分upstream,据他说RHEL已经同意将ZUFS作为一个module加入RHEL 8。


以上所述就是小编给大家介绍的《Linux Kernel中AEP的现状和发展》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Domain-Driven Design

Domain-Driven Design

Eric Evans / Addison-Wesley Professional / 2003-8-30 / USD 74.99

"Eric Evans has written a fantastic book on how you can make the design of your software match your mental model of the problem domain you are addressing. "His book is very compatible with XP. It is n......一起来看看 《Domain-Driven Design》 这本书的介绍吧!

JS 压缩/解压工具
JS 压缩/解压工具

在线压缩/解压 JS 代码

HTML 编码/解码
HTML 编码/解码

HTML 编码/解码

HEX CMYK 转换工具
HEX CMYK 转换工具

HEX CMYK 互转工具